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GENERALIZED SYSTEMS OF RELAXED
g-y-r-COCOERCIVE NONLINEAR VARIATIONAL
INEQUALITIES AND PROJECTION METHODS

RAM U. VERMA

ABSTRACT Let K be a nonempty closed convex subset of a real Hilbert space H.
Approximation solvability of a system of nonlinear variational inequality (SNVI)

problems, based on the convergence of projection methods, is given as follows: find
elements

x*, y*eH such that g(x*), g(y*)eK and
< pT(y*) + g(x*) - g(y*), g(x) - g(x*) Z 0V g(x )eK and for p>0
<NT(*) + g(y*) - g(x*), g(x) - g(y*) 2 0 V g(x )eK and forn >0,

where T: H—> H is a relaxed g-y-r-cocoercive and g-p-Lipschitz continuous
nonlinear mapping on H and g: H — H is any mapping on H. In recent years general
variational inequalities and their algorithmic applications have assumed a central role in
the theory of variational methods. This two-step system for nonlinear variational
inequalities offers a great promise and more new challenges to the existing theory of
general variational inequalities in terms of applications to problems arising from other
closely related fields, such as complementarity problems, control and optimizations,
and mathematical programming.
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1. Introduction

Verma [5] presented a new system of nonlinear strongly monotone variational inequalities and
initiated the approximation solvability of this system based on the convergence of projection methods.
Projection methods have been applied widely to problems arising from mathematical and physical
sciences, especially from complementarity problems, convex quadratic programming, and variational
inequality problems. More research developments on the approximation solvability of a system of
nonlinear variational inequalities are followed by Nie, Liu, Kim and Kang [4], Verma [10] and others.
In this paper, we intend to consider the approximation solvability of a system of nonlinear relaxed g-y-
r-cocoercive variational inequalities in a Hilbert space setting. The obtained results complement the
investigations of Verma [5, 10}, Nie et al. [4] and others. For a better account on general variational
inequality problems and related mappings, we refer to [1-20]. The notion of the relaxed cocoercivity
is more general than the well-known concepts of cocoercivity and strong monotonicity.

Let H be a real Hilbert space with the inner product < x, y > and norm || x |} for x,yeH. LetT,g: H>
H be mappings on H and K be a nonempty closed convex subset of H. We consider a system of
nonlinear variational inequality (abbreviated as SNVI) problems as follows: determine elements x*,
y* €H such that g(x*), g(y*)eK and

< pT(y*) + g(x*) - g(y*), g(x) — g(x*) > 2 0 V g(x) € K and forp> 0 (L1)
<nTE*) + gy*) - g(x*), g(x) - g(y*) > > 0 V g(x)e K and forn > 0. (1.2)
The SNVI (1.1)-(1.2) problem is equivalent to the following projection formulas
g(x*) = Pk [g(y*) - pT(y*)] forp>0
g(y*) = Pk [g(x*) - nT(x*)] forn>0,
where Py is the projection of H onto K.
We note that for n= 0, the SNVI (1.1)<(1.2) problem reduces to the NVI problem: determine an
element x*<H such that g(x*)eK and
<T(x%), g(x) - g(x*) >2 0 ¥ g(x)eK. (1.3)
Let K be a closed convex cone of H. The SNVI (1.1)-(1.2) problem is equivalent to a system of

nonlinear complementarities (abbreviated as SNC): find the elements x*, y*eH such that g(x*),
g(y*)eK, T(y*)eK*, T(x*)eK* and,
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< pT(y*) + g(x*) — g(y*), g(x*) >=0forp >0, (1.4)
<NT(x*) + gy*) — g(x*), g(y*) > = 0 forn >0, (1.5)

where K* is a polar cone to K defined by
K*={fe H:<f,g(x)>=0V g(x) € K}.

Now we need to recall the following auxiliary result, most commonly used in the context
of approximation solvability of nonlinear variational inequality problems based on iterative

procedures.
Lemma 11 [3] For an elemeht zéH, we have
xeKand<x—-z y-x>2>0VyeKifand only if x = Px (z).

Definition 1.1. A mapping T: H — H is called:

(i) monotone if for each x,y € H, we have

<T(x)-T(y),x—-y>20.
(ii) 7-strongly monotone if for each x,y € H, we have
<TE)-Ty),x-y>2r ||X—y\|2foraconstantr> 0.
(iii) r-expansive if

ITG) = Ty 2 1 [Ix = il.
(iv) expansive if

HT(x)—T(y)HZ “x—yH.

(v) s-Lipschitz continuous (or Lipschitzian) if there exists a constant s > 0 such that
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ITx) - Tl <sfx -yl V x,y €H.
(vi) g-cocoercive [1, 5] if for each x,y € H, we have

<TE)-T(),x-y>2pu|Tx)-T (¥)|P for a constant p.> 0.

Proposition 1.1. If a mapping T: H — H is (1/p)-Lipschitz continuous and (1/w)-strongly monotone,
then T is p-cocoercive.

Proposition 1.2. If a mapping T: H— H is nonexpansive, then I - T is (1/2)-cocoercive,
where I denotes the identity mapping.

Clearly, every u-cocoercive mapping T is (1/u)-Lipschitz continuous.

We can easily see that the following implications on monotonicity, strong monotonicity and

expansiveness hold:
strong monotonicity = monotonicity

U

expansiveness

Definition 1.2. A mapping T: H — H is said to be:
(i) g-r-strongly monotone if there exists a constant r > 0 such that

<T(x) - T(y), g&) - g¥) > 21|l gx) - g(y) | Pfor all x, yeH,
where g: H — H is any mapping on H.
(ii) g-s-Lipschitz continuous if for all x, yeH, we have

Tx) - Tyl <sllgx) - gy) || fors> 0.
(iii) relaxed g-y-cocoercive if there exists a constant y > 0 such that

<T(x) - T(), g0 - 80) > 2 DI T@ - T PV xy € H.
(iv) relaxed g-y-r-cocoercive if there exist constants y, r > 0 such that

<T(x) - T(y), 20 — 2y) > = (- D H T - T(y) [P+ 1 1 gx) — gy) | P for all x,yeH.



NONLINEAR VARIATIONAL INEQUALITIES AND PROJECTION METHODS 87

Fory =0, T is g-r-strongly monotone, and for r = 0, T is relaxed g-y-cocoercive . This class of
mappings are more general than the class of strongly monotone mappings. We have the following
implication:

g-r-strong monotonicity

U

relaxed g-y-r-cocoercivity

2. Projection Methods

In this section we present the convergence analysis for projection methods in the context of
the approximation solvability of the SNVI (1.1)-(1.2) problem.

Algorithm 2.1. For arbitrarily chosen initial points X, y° eH with g(xo), g(yo)eK, compute
sequences {g(xk)} and {g(yk)}such that

g(x*"1) = (1- ag(x¥) + 2 Py [8(¥") - PTG))],
g(y") = P[g(x") - nT(Y)],

where Py is the projection of H onto K, p, 1) > 0 are constants, and the sequence {ak}
satisfies

0<a“< 1 and Sy ®a"= 0.
For n = p in Algorithm 2.1, we have

Algorithm 2.2. For arbitrarily chosen initial points x°, y’eH with g(x°), g(y")eK, compute
sequences { g(xk)} and { g(y‘k)} such that

g(x*M)= (1 - ag(x") + Px [8(Y) ~ pPT(YI],
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g(y) = Py [g(x')~ pT]
where
0<a“<1and =0
For n= 0 in Algorithm 2.1, we arrive at

Algorithm 2.3. For an arbitrarily chosen initial point x” eH with g(xo) ek, compute the sequence
{ g(xk)} such that

g = (1 - a9g(x") + Pxlg(x) - PTE],
where
0<a“<tand T, _°a"= .

We now present, based on Algorithm 2.1, the approximation solvability of the SNVI (1.1%(1.2)
problem involving relaxed g-y-r-cocoercive and g-p-Lipschitz continuous mappings in a Hilbert space
setting.

Theorem 2.1. Let H be a real Hilbert space and K a nonempty closed convex subset of H. Let T:
H—> H be relaxed g-y-r-cocoercive and g-p-Lipschitz continuous. Suppose that x*, y* eH (with g(x*),
g(y*)eK) form a solution to the SNVI (1.1)-(1.2) problem, sequences {g(xk)} and { g(yk)} are
generated by Algorithm 2.1, and the sequence {a} satisfies '

0<a“<1 and Ty ”a*=o0.

Then sequences {g(x")} and {g(yk)}, respectively, converge to g(x*) and g(y*) for

0<p<2(r~yu’)u’and 0 <n <2(r - yp’)/p”
If, in addition, g is expansive, then sequences {x*} and {y*}, respectively, converge to x* and y*.

For i1 = 0, we have
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Theorem 2.2. Let H be a real Hilbert space and K a nonempty closed convex subset H. Let T: H—->H
be a relaxed g-y-r-cocoercive and g-p-Lipschitz continuous mapping. In addition, if x*eH is a

solution to the NVI (1.3) problem, the sequence {g(xk)} is generated by Algorithm 2.3, and the
sequence {ak} satisfies

0<a“<1andTy-o"a" =0,
then the sequence {g(xk)} converges to g(x*) for
0<p2(r -y
In addition, if g: H — H is expansive, then X5 x*,
Proof of Theorem 2.1. Since x* is a solution of the SNVI (1.1)-(1.2) problem, it follows that
g(x*) =Pk [g(y*) - pT(y*)] and g(y*) = Px[g(x*) - nTx*)}.

Applying Algorithm 2.1, we have

1 () - gx*) 1= 11 (1-d) g+ & P [(y) - PTGH)]

(1~ a%g(x*) — a* Pgle(y*) - pT(yM] |

<(1-a9 1] g — g |+ 2 || Pl - pT1 - Prler®) - pT) |

< (-9 g9 - g9 |1+ 2 1 - 2% - PTG - T 1L @1
Since T is relaxed g-y-r-cocoercive and g-p-Lipschitz continuous, we have

|| g(7*) - g(®) - PITGHN - TN | P
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= g — gy | P=20< T - T(r*), 26 - 86 > +9° | TN - T IF

< g6 - g | P+ 20y || T8 - Tev*) | P = 20r |1 g - 864 | P

+ (2 ) g% - g™ | P

< g - g% | B+ 20m || g5 - gv) [P+ (ow)* 1 g - 2 P
—2pr |l gy - gy IF

= 11 ~2pr+ 2py” + (pu)) | g - ™) IF.

As a result, we have

g - g0 1< (1 - 29 11 g - gx#) |1+ 0 lg(v9 - g I}
where © = [1 - 2pr + 2y’ + (P’
Similarly, we have
11807 — &%) | P = || Pelg(x)~ nT()] - Pxlg(x*) - nT(x] | P
< [ g6 — g&x*) - (TG - Tee) P

<[1 = 2nr + 2y + () g — g | F.

Hence, we have

e - g™ <o llg-gx® ]l

2.2)
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<l g(xk)— gx®)|lforo <1, 2.3)

12

where 6 = [1 - 2nr + 2nyp’ + (Mp)’]

It follows from (2.2) and (2.3) that
g™ - g 1< (1 -2 [ g(x) - gx*) |1+ a*0 || gx*) - gx*) ]

=[1-(1-0)a | gx") - gx®

<Teo *[1 - (1 - 0)a] | g(x) - g(x*) |, (2.4)

where 0 =[1 - 2pr + 2pyu2+ (pp)Z] <1
Since 0 < 1 and Zy- ¢ a%is divergent, it implies in light of [17] that
M IT— o [1 — (1 - 6)2'] = 0.

Hence, the sequence {g(xk)} converges to g(x*) by (2.4), and the sequence { g(yk)} converges to g(y*)
by (2.3) for

0<p<2r—yu)u’.
Since g is expansive, it implies that sequences {x*} and {y*} converge to x* and y*, respectively. (]
Corollary 2.1. Let H be a real Hilbert space and K a nonempty closed convex subset of H. Let T: H
— H be g-r-strongly monotone and g-p-Lipschitz continuous. Suppose that x*, y*eH form a solution

to the SNVI (1.1)-(1.2) problem, sequences {g(x"} and {g(y")} are generated by Algorithm 2.1, and

0<a*<land X -, a“=o.
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Then sequences { g(x")} and {g(yk)}, respectively, converge to g(x*) and g(y*) for
0<p<2h.
If, in addition, g is expansive, then sequences {x*} and {yk} converge, respectively, to x*, y*.
Corollary 2.2. Let H be a real Hilbert space and K be its nonempty closed convex subset.
If T: K — H is an g-r-strongly monotone and g-u-Lipschitz continuous mapping, x* is a
solution to the NVI (1.3) problem, the sequence { g(xk)}is generated by Algorithm 2.3, and
1< a“< 1 and Sieg” 2" = oo,
then the sequence {g(xk)} converges to g(x*) for
0<p<2r/ .
If, g is expansive, then the sequence {x*} converges to x*.
Remark
The SNVI (1.1)-(1.2) problem can be extended as follows: let H, and H, be two real Hilbert spaces,
and K; and K, respectively, be nonempty closed convex subsets of H,and H; Let

S: K;xK, — Hj, and T: K;xK, — H, be two nonlinear mappings. Then the problem of finding (x*,
y¥)eK;xK; such that

< S(x*, y¥), x—x*>>0V xekK;

<T(*, ¥y, y-y*>20Vyek,,

is said to be a system of nonlinear variational inequalities.
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