• Title/Summary/Keyword: Reduced-Order Model

Search Result 1,137, Processing Time 0.028 seconds

A Study on Feasibility Evaluation for Prognosis Systems based on an Empirical Model in Nuclear Power Plants

  • Lee, Soo Ill
    • International Journal of Safety
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This paper introduces a feasibility evaluation method for prognosis systems based on an empirical model in nuclear power plants. By exploiting the dynamical signature characterized by abnormal phenomena, the prognosis technique can be applied to detect the plant abnormal states prior to an unexpected plant trip. Early $operator^{\circ}{\emptyset}s$ awareness can extend available time for operation action; therefore, unexpected plant trip and time-consuming maintenance can be reduced. For the practical application in nuclear power plant, it is important not only to enhance the advantages of prognosis systems, but also to quantify the negative impact in prognosis, e.g., uncertainty. In order to apply these prognosis systems to real nuclear power plants, it is necessary to conduct a feasibility evaluation; the evaluation consists of 4 steps (: the development of an evaluation method, the development of selection criteria for the abnormal state, acquisition and signal processing, and an evaluation experiment). In this paper, we introduce the feasibility evaluation method and propose further study points for applying prognosis systems from KHNP's experiences in testing some prognosis technologies available in the market.

Nonlinear analysis of thin shallow arches subject to snap-through using truss models

  • Xenidis, H.;Morfidis, K.;Papadopoulos, P.G.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.521-542
    • /
    • 2013
  • In this study a truss model is used for the geometrically nonlinear static and dynamic analysis of a thin shallow arch subject to snap-through. Thanks to the very simple geometry of a truss, the equilibrium conditions can be easily written and the global stiffness matrix can be easily updated with respect to the deformed structure, within each step of the analysis. A very coarse discretization is applied; so, in a very simple way, the high frequency modes are suppressed from the beginning and there is no need to develop a complicated reduced-order technique. Two short computer programs have been developed for the geometrically nonlinear static analysis by displacement control of a plane truss model of a structure as well as for its dynamic analysis by the step-by-step time integration algorithm of trapezoidal rule, combined with a predictor-corrector technique. These two short, fully documented computer programs are applied on the geometrically nonlinear static and dynamic analysis of a specific thin shallow arch subject to snap-through.

Cartesian Coordinate Control of Robot Motion (로보트 운동에 대한 공간 좌표 제어)

  • 노영식;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.5
    • /
    • pp.177-184
    • /
    • 1986
  • An effective cartesian coordinate model is presented to control a robot motion along a prescribed timebased hand trajectory in cartesian coordinates and to provide an adaptive feedback design approach utilizing self-tuning control methods without requiring a detailed mathematical description of the system dynamics. Assuming that each of the hybrid variable set of velocities and forces at the cartesian coordinate level is mutually independent, the dynamic model for the cartesian coordinate control is reduced to first-order SISO models for each degree of freedom of robot hand, including a term to represent all unmodeled effects, by which the number of parameters to be identified is minimized. The self-tuners are designde to minimize a chosen performance criterion, and the computed control forces are resolved into applied joint torques by the Jacobian matrix. The robustness of the model and controller is demonstrated by comparing with the other catesian coordinate controllers.

  • PDF

Laboratory investigation on deep excavation-induced ground movements (축소모형실험을 이용한 지반굴착시 주변 지반 거동 연구)

  • Yoo, Chung-Sik;Lee, Soung-Woo;Lee, Bong-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1476-1483
    • /
    • 2005
  • This paper presents the results of small scale model tests on the behavior of propped wall and ground movements during deep excavation. Small scale model tests were performed in order to investigate the effects of various influencing factors on the deep excavation, such as stiffness of ground and unsupported span length. The results of model tests indicated that the wall behavior is significantly influenced not only by the stiffness of ground but by the over-excavation, and that the wall behavior can be reduced by decreasing the unsupported span length and increasing the stiffness of ground.

  • PDF

On the Number of Modes Required to Observe Forces in Flexible Structures (유연 구조물에서 반력 평가를 위해 요구되는 모드의 수)

  • Kim, Joo-Hyung;Kim, Sang-Sup
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.562-567
    • /
    • 2001
  • The number of required modes to provide accurate force information in a truncated model of a flexible structure is investigated. In the case of modal truncation of a distributed parameter system, the difference in convergence rates between displacements and forces is discussed. The residual flexibility, a term from past literature, is used to recapture some of the lost force information in a truncated model. This paper presents numerical and experimental results of a study where the residual flexibility is used in conjunction with a Kalman filter so that accurate force information may be obtained from a small set of displacement measurements with a reduced-order model. The motivation for this paper is to be able to obtain accurate information about unmeasurable dynamic reaction forces in a rotating machine for diagnostic and control purposes.

  • PDF

Robust controller design for RTP system using structured uncertainty approach (구조적 불확실성 접근을 이용한 RTP 시스템의 견실제어기 설계)

  • Lee, Sang-Kyung;Kim, Jong-Hae;Kim, Hae-Kun;Park, Hong-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.667-675
    • /
    • 1999
  • In this paper, we propose a robust controller design of RTP(Rapid Thermal Processing) system using structured uncertainty approach. Using the weighted mixed sensitivity function, we solve the robust stability problem against disturbance and temperature variation, and design a $\mu$ controller using curve fitting method against structured uncertainty. Also the reduction method should be requried because of the difficulty of implementaion with the obtained high order controller. We dal with robust stability and performance of RTP system by the design of $\mu$ controller for original model and Schur balanced reduced model. Finally the simulation results are proposed to show the validity of the proposed method.

  • PDF

Lightweight CNN-based Expression Recognition on Humanoid Robot

  • Zhao, Guangzhe;Yang, Hanting;Tao, Yong;Zhang, Lei;Zhao, Chunxiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1188-1203
    • /
    • 2020
  • The human expression contains a lot of information that can be used to detect complex conditions such as pain and fatigue. After deep learning became the mainstream method, the traditional feature extraction method no longer has advantages. However, in order to achieve higher accuracy, researchers continue to stack the number of layers of the neural network, which makes the real-time performance of the model weak. Therefore, this paper proposed an expression recognition framework based on densely concatenated convolutional neural networks to balance accuracy and latency and apply it to humanoid robots. The techniques of feature reuse and parameter compression in the framework improved the learning ability of the model and greatly reduced the parameters. Experiments showed that the proposed model can reduce tens of times the parameters at the expense of little accuracy.

A Robust Model Reference Adaptive Control with a Modified $\sigma$-modification algorithm (새로운 $\sigma$-변형 알고리즘을 사용한 강인한 기준모델 적응제어)

  • 이호진;정종대;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.9
    • /
    • pp.1322-1331
    • /
    • 1989
  • This paper proposes a new adaptation algorithm with which a model reference adaptive control can give a local boundedness of the tracking error applied to a continuous-time linear time-invariant single-input single-output plant whose reduced-order model is of relative degree 1 and whose unmodeled dynamics may be represented in a sigular perturbation form. With the addition of an offset term and an extra adaptation structure, this algorithm is shown to have a robustness property in the sense that this gives zero residual tracking errors when the unmodeled dynamics are disappeared.

  • PDF

On the Number of Modes Required to Observe Forces in Flexible Structures (유연 구조물에서 반력 평가를 위해 요구되는 모드의 수)

  • Kim, Joo-Hyung;Kim, Sang-Sup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.150-157
    • /
    • 2002
  • The number of required modes to provide accurate force information in a truncated model of a flexible structure is investigated. In the case of modal truncation of a distributed parameter system, the difference in convergence rates between displacements and forces is discussed. The residual flexibility. a term from past literature, is used to recapture some of the lost force information in a truncated model. This paper presents numerical and experimental results of a study where the residual flexibility is used in conjunction with a Kalman filter so that accurate force information may be obtained from a small set of displacement measurements wish a reduced-order model. The motivation for this paper is to be able to obtain accurate information about unmeasurable dynamic reaction forces in a rotating machine for diagnostic and control purposes.

Louvered Fin Heat Exchanger : Optimal Design and Numerical Investigation of Heat and Flow Characteristics (루버휜 최적 설계 및 최적 모델의 열유동 특성 분석)

  • Ryu, Kijung;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.654-659
    • /
    • 2013
  • This paper presents a numerical optimization of louvered fins to enhance the JF factor in terms of the design parameters, including the fin pitch, the number of louvers, the louver angle, the fin thickness, and the re-direction louver length. We carried out a parametric study to select the three most important parameters affecting the JF factor, which were the fin pitch, number of louvers, and the louver angle. We optimally designed the louvered fin by using 3rd-order full factorial design, the kriging method, and a micro genetic algorithm. Consequently, the JF factor of the optimum model increased by 16% compared to that of the base model. Moreover, the optimum model reduced the pressure drop by 17% with a comparable heat transfer rate.