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Abstract : This paper introduces a feasibility evaluation method for prognosis systems based on an empirical model

in nuclear power plants. By exploiting the dynamical signature characterized by abnormal phenomena, the progno-

sis technique can be applied to detect the plant abnormal states prior to an unexpected plant trip. Early operator°Øs

awareness can extend available time for operation action; therefore, unexpected plant trip and time-consuming

maintenance can be reduced. For the practical application in nuclear power plant, it is important not only to

enhance the advantages of prognosis systems, but also to quantify the negative impact in prognosis, e.g., uncer-

tainty. In order to apply these prognosis systems to real nuclear power plants, it is necessary to conduct a feasi-

bility evaluation; the evaluation consists of 4 steps (: the development of an evaluation method, the development of

selection criteria for the abnormal state, acquisition and signal processing, and an evaluation experiment). In this

paper, we introduce the feasibility evaluation method and propose further study points for applying prognosis sys-

tems from KHNP’s experiences in testing some prognosis technologies available in the market.
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1. Introduction

On-line monitoring (OLM) systems have been widely

researched to enhance the safety and human reliability

in nuclear power plants (NPPs). As new NPPs are apply-

ing an advanced digital main control room (MCR) and

I&C systems, advanced man machine interface (MMI)

has been widely researched. Recently, the prognosis tech-

nique, which is a kind of advanced computerized oper-

ator support system (COSS) beyond the conventional

diagnosis technique which is related only to past states,

be regarded as a solution to reduce time-consuming,

unnecessary maintenance and unexpected downtime [1-2].

The reason why empirical modeling techniques have been

widely studied is to difficult to depict a complex system

like an NPP by mathematical modeling based on a dif-

ferential equation; however, some of these techniques

have already been installed in NPPs. On the other hand,

NPPs in Korea have mainly employed deterministic

diagnosis systems based on first principle modeling

(e.g., design-based modeling, physics-based modeling)

because it is difficult to solve the negative impact of

unexpected outcomes or failures from the uncertainty of

empirical modeling [3]. Fig. 1 shows that the prognosis

concept of an abnormal state is effective not only in

reducing the unexpected plant downtime by extending

the operator’s available action time, but also in avoiding

time-consuming, expensive and unnecessary mainte-

nance by enacting plans based on the prognosis result

in advance. 

Most studies based on the empirical model for NPPs

*Corresponding author: kangta1@khnp.co.kr Fig. 1. Prognosis concept.
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have concentrated on the area of signal validation (SV)

and event identification (EI). In this paper, we propose

a feasibility evaluation method that can be used for fea-

sibility evaluation in the both case of SV and EI. The

proposed method consists of the development of an

evaluation measure, the selection criteria of abnormal

states, acquisition and signal processing, and an evalua-

tion experiment.

2. Related Work

NPPs in Korea mainly still rely on the conventional

diagnosis systems based on first principle modeling and

have tried to employ the empirical models to real NPPs,

but several problems remain with the empirical model

as outlined below:

• Solution and quantification of the uncertainty from

the empirical model,

• Appropriate method to nuclear regulatory guide for

the safety

• Human confusion and an increased workload by

incorrect information from empirical modeling,

• Specific environment issues, i.e., noise, distortion,

and aging,

• Dependency on human knowledge for modeling,

We surveyed recent prognosis studies, which are

discussed below, related to NPPs to solve those problems

by a proposed method. Most applications of the prognosis

concept in NPPs have concentrated on the area of SV at

the sensor level, and EI at the process level. In the area

of EI, we reviewed four applications: Aladdin, EPI*

Center, PHI (Plant Health Index) system, and ADIOS

(Alarm and Diagnosis-Integrated Operator Support

System). The OECD HRP (Halden Reactor Project)

developed Aladdin on the basis of a recurrent neural

network [4]. EPI* Center, supplied by Smart Signal Co.,

employs similarity based modeling as its nonparametric

empirical model [5-6]. EPI* Center has been regarded

as an application in practical use in technical reports.

For the PHI system and ADIOS, developed in Korea,

feasibility evaluations have been conducted [3]. 

In the area of SV for NPPs, we reviewed three

applications: PEANO (Process Evaluation and Analysis by

Neural Operators), PCSVR (Principle Component-based

Auto Association Support Vector Regression) and EPRI’s

application which calls sensor calibration interval

extension. The OECD HRP originally developed the

PEANO, which employs a neural network and fuzzy-

logic; this has been installed to the VC Summer NPP

[7]. PCSVR, which was developed by KEPCO RI

(Korea Electric Power CO., Research Institute), employs

the PCA (Principle Component Analysis) and SVM

(Support Vector Machine) regression methods [8].

Electric power research institute (EPRI) also developed

an application that was installed at the Sizewell B NPP

in 2007 [9]. U. S. nuclear regulatory commission (NRC)

issued a safety evaluation report (SER) that concluded

that the generic concept of OLM is acceptable and listed

14 requirements [10]. The on-line monitoring regulatory

position of the U. S. NRC is in NUREG/CR-6895, which

provides the technical details necessary to conduct an

accurate evaluation of online instrument calibration

monitoring techniques [11].

3. Feasibility Evaluation Method

The overall structure of the proposed feasibility

evaluation method is shown in Fig. 2, which consists of

4 steps (: the development of an evaluation method, the

development of selection criteria for the abnormal state,

acquisition and signal processing, and an evaluation

experiment). The analysis and simulation test of several

application examples has been reviewed to develop the

feasibility evaluation method.

3.1 Feasibility evaluation measure

Because it used to meet the critical software require-

ments when a new system is applied in an NPP, the

evaluation measure has been extracted by considering

the system reliability and the existing application exam-

ples of the feasibility evaluation, as shown in Table 1.

The equation (1) can be applied to the accuracy mea-

Fig. 2. Structure of the feasibility evaluation.



28 Soo Ill Lee

sure of the SV system.

(1)

A : Errors,

N : Number of evaluation tests,

 : Predicted value on the i’th evaluation,

Xi : Real value from the process on the i’th evalua-

tion.

On the other hand, the following probability equation

(2) can be applied to the accuracy measure of the EI

system. 

(2)

 : Accuracy,

N : Number of evaluation test,

p : Number of well-recognition test.

For the robustness, if the quantity of a change can be

measured, auto-sensitivity could be applied to the

robustness measure of the early fault diagnosis tech-

nique as the following equation (3). Otherwise, the

robustness result can be included in the accuracy mea-

sures (: equation (1), (2)) when the quantity of a change

cannot be measured due to the complex various condi-

tions.

(3) 

S : Auto-sensitivity,

N : Number of evaluation tests, 

for the SV system,

 : Predicted value on the i’th evaluation with noise

or drift,

yi : Predicted value on the i’th evaluation without

noise or drift,

 : Input value on the i’th evaluation with noise or

drift,

xi : Input value on the i’th evaluation without noise or

drift.

For the EI system, When recognized successfully,

, otherwise, .

Although this feasibility evaluation method did not

deal with the real-time performance and reliability, two

parameters should be considered when specifying the

requirements of the system at the production stage by

considering the cost, application area, etc.

3.2 Selection criteria of abnormal states

Because it is difficult to consider all fault states in a

diagnosis system, an operational plant model related to

the fault state, categorization and features should be

derived [12]. Thus, we proposed the selection criteria of

abnormal states as shown in Table 1. The applicable

abnormal states in the proposed selection criteria were

categorized and selected on the basis of the plant AOP

(Abnormal Operating Procedure). 

In the feasibility evaluations in this case, for the no. 1

and no. 2 criteria in Table 1, we statistically analyzed

on the basis of the AOPs the unexpected trip data

which was taken from six units of the OPR1000 (Opti-

mal Power Reactor 1000MWe) type reactor and two

units of the other type of reactor as shown in Table 2
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Table 1. Evaluation measure and application examples from

system reliability angle

Evaluation

measure
Application example

Accuracy

- Sensor Calibration Interval Extension (by EPRI)

- Aladdin

- PEANO

- EPI* Center

- PCSVR

Robustness

- Aladdin

- PEANO

- PCSVR

Table 2. Selection criteria for abnormal states

No. Selection criteria Ranking method

1 Relationship to the reactor trip
• Analysis of the past fault 

data

2

Probability of fault states 

(according to past statistical 

data)

• Analysis of the past fault 

data

3
Easy of modeling the fault 

diagnosis system

• Physical process

• Identification of the 

relationship between cause 

and effect

4

Performance of the early fault 

diagnosis system(accuracy, 

robustness)

• Simulation

5
Easy of quantifying uncer-

tainty

• Analysis of the empirical 

model,

• Simulation

6
Easy of training with the 

model
• Simulation
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[12]. Because the plant AOPs include not only system

processes but also physical processes, no. 3 criterion

must be checked to grasp the dynamic features of the

prognosis capability, specifically whether or not the

AOP is related to the physical. 

In addition, past experience related to Aladdin and the

EPI* Center shows their effectiveness in the case of

leakage of the RCP(Reactor Coolant Pump) or in the

event of bearing trouble. Because the most frequent

trips, which are no.1 and no.2 in Table 2, were derived

from trouble with various devices, it was difficult to

identify the relationship between cause and effect. There-

fore, “the abnormal state of RCP,” which is ranked no. 6

in the Table 3, can meet the no. 4 criterion. 

For the no. 4 criterion in Table 1, we conducted sim-

ulation tests to measure the performance (e.g., accuracy,

robustness) for the case of the selected abnormal states

by using various developed prognosis systems (e.g.,

Aladdin, EPI* Center). These simulation tests used an

abnormal states dataset, acquired from the APR1400

(Advanced Power Reactor 1400MWe) simulator with

varying of proceeding time, slope, level, temperature

and flow for the malfunctions, in an effort to measure

the robustness as well as the accuracy.

3.3 Acquisition and signal processing

For the EI evaluation experiment, the data obtained

from the simulation are configured for 8 types of abnor-

mal state and 1 type of normal state related to RCP. We

conducted five tests per each state with varying of pro-

ceeding time and slope for system malfunction, with

varying of the level, temperature and flow for the com-

ponent malfunction, which aims at evaluating the robust-

ness of the prognosis systems. In order to cover the

eight abnormal states as shown in Table 4, we dealt

with 16 variables by using a sampling rate of 1 SPS

(Sample Per Second). 

The overall procedure of digital processing, which can

create the experimental environment for evaluation of

the robustness and can evaluate early diagnosis perfor-

mance before alarm occurs, is summarized in Fig. 3.

For the SV evaluation experiment, we used the real

start-up mode data, which include 65 variables, acquired

from real Kori NPP unit #3 and select the highly

correlated 11 variables as shown in Table 5. We

employed 3 types of the change of drift (: decrease

exponentially at the range of 75%, 80%, 85%) and 3

Table 3. Priority ranking to cause of unexpected trip and the

type of artificial malfunction in simulator

Priority The title of AOP
Physical 

process

# of artificial

malfunction type

1 Turbine generator trip  ×  8

2
Control rod drop and 

misalignment
× 1

3
Closure of main steam 

stop valve
× -

4
Fault of the reactor 

control system 
× -

5
Fault of moving power 

transformer
× 1

6
Abnormal state of 

reactor coolant pump
○ 8

6
Main feed-water pump 

trip
× 1

6
Leakage of reactor 

coolant system
○ 3

Table 4. Eight abnormal states

Abnormal 

State
Description Varying conditions

State #1
RCP PP01A Seal #1 

Failure
proceeding time, slope

State #2
RCP PP01A Seal #2 

Failure
proceeding time, slope

State #3
RCP PP01A Seal #3 

Failure
proceeding time, slope

State #4 RCP #1A Trip -

State #5
Reactor Coolant Pump 

PP01A Sheared Shaft 
proceeding time, slope

State #6 Oil Reservoir 1A Level level

State #7
RCP PP01A CTRL 

Bleed Off Temp.
temperature

State #8
RCP PP01A CTRL 

Bleed Off Flow
flow

Fig. 3. Procedure of digital signal processing.
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types of the maximum range of random noise(: 1%,

4%, 7%). In Fig. 4, red line means the original signal,

and blue line means the drift signal which is artificially

added by noise and exponential function. The total

number of experiment can be 165 times(: 3 types of

drift * 11 variables * 5 datasets) [12].

3.4 Evaluation experiment

In this paper, we used the Aladdin system and EPI*

Center for the EI evaluation experiment. Because Alad-

din employs the ensemble concept of recurrent neural

network to solve the difficulty of training and the

WOLP (Wavelet On-Line Pre-processing) [4], we con-

ducted the experiment with various sizes of the window

and ensemble. Table 6 shows the accuracy of 100% for

states #4 to #8, and lower accuracy for states #1 to #3.

For states #1 to #3, selected variables for the Aladdin

were unable to diagnose the abnormal states accurately

with quite large recognition errors. 

This evaluation experiment shows the accuracy of

81.1% by equation (2). However, Table 6 shows not

only robustness but also accuracy due to the dataset

obtained by the acquisition process with varying condi-

tions (: proceeding time, slope, level, temperature and

flow) and artificial insertion of random noise. As

described equation 3, we did not measure the robustness

Table 5. Eight abnormal states

No. The name of variable

1 CorePwr

2 PZRLvl1

3 MFW1Fw1

4 TBNPwr

5 TBNSpd

6 RCCL1Tp

7 RCSPr

8 SG1Fw1

9 SG1Lvl

10 SG1Pr

11 SG1WLvl

Fig. 4. Example of drifted data.

Table 6. Recognition performance of Aladdin

(Success Number/Trial Number)

Abnormal State Trial #1 Trial #2

State #1 0/5 0/5

State #2 1/5 3/5

State #3 5/5 4/5

State #4 5/5 5/5

State #5 5/5 5/5

State #6 5/5 5/5

State #7 5/5 5/5

State #8 5/5 5/5

Fig. 5. Simulation test examples for the state#1.
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independently because various conditions and random

noise were employed. 

Fig. 5 shows two examples of the recognition results

by two kinds of prognosis applications. The X axis

denotes the time and the Y axis indicates the normal-

ized values of process variables. As shown in Fig. 5(a),

the result of Aladdin contains errors, as can be recog-

nized by state #3 for abnormal state #1. Fig. 5(b) is an

example of the accurate recognition of abnormal state

#1 by EPI* Center.

Although we did not deal with the no. 5 and no. 6

criteria in our feasibility evaluation, we added the two

criteria to note the interaction between a human and the

empirical model: 

• no. 5 criterion can give the confidence of the empir-

ical model to a human by clarifying or quantifying

the uncertainty.

• no. 6 criterion can give the convenience of a human

to maintain an empirical model of the prognosis

system.

In this paper, we used the PCSVR system for the SV

evaluation experiment. Fig. 6 shows an example of the

well-predicted result by drift input signal. The X axis

denotes the time and the Y axis indicates the normal-

ized values of process variables. As shown in Fig. 6,

when the difference between measured drift signal and

predicted signal is bigger than the designated value, the

operator can realize the abnormal state of the signal.

The total average of the error rate by equation (1) is

0.1495. As shown in Fig. 7, the change of the error rate

is much affected by drift range compared to by noise

weight.

4. Conclusion

In this paper, we introduce a feasibility evaluation

experience and method that is made up of the develop-

ment of an evaluation measure, the development of

selection criteria for the abnormal state, acquisition and

signal processing, an evaluation experiment for applying

the prognosis systems to real NPPs in Korea. The result

of this experiment indicates that it is somewhat feasible

to apply the empirical model to real NPPs, but we have

also found improvement points for a further study as

summarized below.

• Comparison between the performance of the existing

prognosis systems,

• Careful selection of variables and faults for finding

optimized variable set,

• Development of a prognosis algorithm to make the

uncertainty minimized,

• Solutions for other difficulties (e.g., environmental

issues, dependency on human knowledge).Fig. 6. Simulation test examples by SV system.

Fig. 7. Robustness test by SV system.
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