• Title/Summary/Keyword: Real world problem

Search Result 744, Processing Time 0.038 seconds

A Study on the Mathematical Problem Solving Teaching based on the Problem solving approach according to the Intuitive and the Formal Inquiry (직관적·형식적 탐구 기반의 문제해결식 접근법에 따른 수학 문제해결 지도 방안 탐색)

  • Lee, Daehyun
    • Journal for History of Mathematics
    • /
    • v.32 no.6
    • /
    • pp.281-299
    • /
    • 2019
  • Mathematical problem solving has become a major concern in school mathematics, and methods to enhance children's mathematical problem solving abilities have been the main topics in many mathematics education researches. In addition to previous researches about problem solving, the development of a mathematical problem solving method that enables children to establish mathematical concepts through problem solving, to discover formalized principles associated with concepts, and to apply them to real world situations needs. For this purpose, I examined the necessity of problem solving education and reviewed mathematical problem solving researches and problem solving models for giving the theoretical backgrounds. This study suggested the problem solving approach based on the intuitive and the formal inquiry which are the basis of mathematical discovery and inquiry process. And it is developed to keep the balance and complement of the conceptual understanding and the procedural understanding respectively. In addition, it consisted of problem posing to apply the mathematical principles in the application stage.

Analysis of plane figures and their measures in 'GwangmuYangan' from the perspective of Joseon mathematics (조선 산학의 관점에서 <광무양안>에 제시된 평면도형의 측도 분석)

  • CHANG Hyewon
    • Journal for History of Mathematics
    • /
    • v.37 no.3
    • /
    • pp.59-75
    • /
    • 2024
  • This study aims to analyze Joseon mathematical knowledge and its application to real world. The mathematical knowledge refers to measuring the area of plane figures, known as square-shaped land(方田). Its application is land surveys(量田) conducted for taxation purposes. Specifically, this study analyzes the correlation between the related contents in representative mathematical books of the Joseon Dynasty, such as MuksaJipsanbub (17th century), Guiljib (18th century), and SanhakIbmun (18th century), and the shapes and areas of plane figures presented in GwangmuYangan (20th century). The analysis reveals both differences and similarities in the measured area between mathematical books and real world land surveys. While most results of the land survey align with the results obtained from mathematical methods, differences arise due to variations in real measurement of lengths and given conditions in the problems. Additionally, various aspects such as the focus on rectangles in land surveys, the proportionality and relativity of lengths, types of approximation, composed shapes, the purpose of problem solving, and reasoning of unspecified shapes or measures are discussed.

The development of critical node method based heuristic procedure for Solving fuzzy assembly-line balancing problem (퍼지 조립라인밸런싱 문제 해결을 위한 주노드법에 기초한 휴리스틱 절차 개발)

  • 이상완;박병주
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.51
    • /
    • pp.189-197
    • /
    • 1999
  • Assembly line balancing problem is known as one of difficult combinatorial optimization problems. This problem has been solved with linear programming, dynamic programming approaches. but unfortunately these approaches do not lead to efficient algorithms. Recently, genetic algorithm has been recognized as an efficient procedure for solving hard combinatorial optimization problems, but has a defect that requires long-run time and computational complexties to find the solution. For this reason, we adapt a new method called the Critical Node Method that is intuitive, easy to understand, simple for implementation. Fuzzy set theory is frequently used to represent uncertainty of information. In this paper, to treat the data of real world problems we use a fuzzy number to represent the duration and Critical Node Method based heuristic procedure is developed for solving fuzzy assembly line balancing problem.

  • PDF

GENIIS, a New Hybrid Algorithm for Solving the Mixed Chinese Postman Problem

  • Choi, Myeong-Gil;Thangi, Nguyen-Manh;Hwang, Won-Joo
    • The Journal of Information Systems
    • /
    • v.17 no.3
    • /
    • pp.39-58
    • /
    • 2008
  • Mixed Chinese Postman Problem (MCPP) is a practical generalization of the classical Chinese Postman Problem (CPP) and it could be applied in many real world. Although MCPP is useful in terms of reality, MCPP has been proved to be a NP-complete problem. To find optimal solutions efficiently in MCPP, we can reduce searching space to be small effective searching space containing optimal solutions. We propose GENIIS methodology, which is a kind of hybrid algorithm combines the approximate algorithms and genetic algorithm. To get good solutions in the effective searching space, GENIIS uses approximate algorithm and genetic algorithm. This paper validates the usefulness of the proposed approach in a simulation. The results of our paper could be utilized to increase the efficiencies of network and transportation in business.

Development and Application of a Collaborative-Reflection Instructional Model by using Meta-Cognition in Computer Skill Education (컴퓨터 기능 교육에서 초인지를 이용한 협력적 성찰 수업모형의 개발 및 적용)

  • Kim, Kap-Su;Lee, Mi-Sook
    • Journal of The Korean Association of Information Education
    • /
    • v.9 no.2
    • /
    • pp.339-348
    • /
    • 2005
  • The trend of the computer education is shifting from problem-solving in the real world and using functions for it to behavioristic perspectives which encourage people to acquire the functions simply according to the applying programs of well-known companies. Thus, this research studies the computer instructional model which emphasizes the basic computer education and connections to the real world at the same time. In the constructivistic perspectives, this model emphasizes the learners activities, their using of meta-cognitive strategies to reflect their level of the lesson and collaborative-reflective learning of problem-solving. The research applied in the real computer skill education and according to the result of the research, I could find the experimental group got high level of learning achievement and this benefits to the high level group rather than low and middle group.

  • PDF

A Study on the Teaching and Learning of Discrete Mathematics in the 7th Mathematics Curriculum (제7차 교육과정의 이산수학 교수-학습에 관한 연구)

  • Kim Nam Hee
    • School Mathematics
    • /
    • v.7 no.1
    • /
    • pp.77-101
    • /
    • 2005
  • This study is a discussion of the teaching and learning of discrete mathematics in school mathematics. In this study, we summarized the importance of discrete mathematics m school mathematics. And we examined instruction methods of discrete mathematics expressed in the 7th mathematics curriculum. On the basis of analysis for teaching cases in previous studies, we proposed four suggestions to organize discrete mathematics classroom. That is as follows. First, discrete mathematics needs to be introduced as a mathematical modeling of real-world problem. Second, algorithm learning in discrete mathematics have to be accomplished with computer experiments. Third, when we solve a problem with discrete data, we need to consider discrete property of given data. Forth, discrete mathematics class must be full of investigation and discussion among students. In each suggestion, we dealt with detailed examples including educational ideas in order to helping mathematics teacher orgainzing discrete mathematics classroom.

  • PDF

Optimum parameterization in grillage design under a worst point load

  • Kim Yun-Young;Ko Jae-Yang
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.137-143
    • /
    • 2006
  • The optimum grillage design belongs to nonlinear constrained optimization problem. The determination of beam scantlings for the grillage structure is a very crucial matter out of whole structural design process. The performance of optimization methods, based on penalty functions, is highly problem-dependent and many methods require additional tuning of some variables. This additional tuning is the influences of penalty coefficient, which depend strongly on the degree of constraint violation. Moreover, Binary-coded Genetic Algorithm (BGA) meets certain difficulties when dealing with continuous and/or discrete search spaces with large dimensions. With the above reasons, Real-coded Micro-Genetic Algorithm ($R{\mu}GA$) is proposed to find the optimum beam scantlings of the grillage structure without handling any of penalty functions. $R{\mu}GA$ can help in avoiding the premature convergence and search for global solution-spaces, because of its wide spread applicability, global perspective and inherent parallelism. Direct stiffness method is used as a numerical tool for the grillage analysis. In optimization study to find minimum weight, sensitivity study is carried out with varying beam configurations. From the simulation results, it has been concluded that the proposed $R{\mu}GA$ is an effective optimization tool for solving continuous and/or discrete nonlinear real-world optimization problems.

Anti-Sway Control System Design for the Container Crane

  • An, Sang-Back;Kim, Young-Bok;Kang, Gi-Bong;Zhai, Guisheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1404-1409
    • /
    • 2003
  • The sway control problem of the pendulum motion of the container crane hanging on the trolley, which transports containers from the container ship to the truck, is considered in this paper. In the container crane control problem, the main issue is to suppress the residual swing motion of the container at the end of the acceleration, deceleration or the case of that the unexpected disturbance input exists. For this problem, in general, the trolley motion control strategy is introduced and applied to real plants. In this paper, we suggest a new type of swing motion control system for a crane system in which a small auxiliary mass is installed on the spreader. The actuator reacting against the auxiliary mass applies inertial control forces to the spreader of the container crane to reduce the swing motion in the desired manner. In this paper, we consider that the length of the rope varies is we design the anti-sway control system based on LMI(linear matrix inequality) approach. And, it will be shown that the proposed control strategy is useful and it can be easily applicable to the real world. So, in this study, we investigate usefulness of the proposed anti-sway system and evaluate system performance from simulation and experimental studies.

  • PDF

Development of Optimal-Path Finding System(X-PATH) Using Search Space Reduction Technique Based on Expert System (전문가시스템을 이용한 최적경로 탐색시스템(X-PATH)의 개발)

  • 남궁성;노정현
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.1
    • /
    • pp.51-67
    • /
    • 1996
  • The optimal path-finding problem becomes complicated when multiple variables are simultaneously considered such as physical route length, degree of congestion, traffic capacity of intersections, number of intersections and lanes, and existence of free ways. Therefore, many researchers in various fields (management science, computer science, applied mathematics, production planning, satellite launching) attempted to solve the problem by ignoring many variables for problem simplification, by developing intelligent algorithms, or by developing high-speed hardware. In this research, an integration of expert system technique and case-based reasoning in high level with a conventional algorithms in lower level was attempted to develop an optimal path-finding system. Early application of experienced driver's knowledge and case data accumulated in case base drastically reduces number of possible combinations of optimal paths by generating promising alternatives and by eliminating non-profitable alternatives. Then, employment of a conventional optimization algorithm provides faster search mechanisms than other methods such as bidirectional algorithm and $A^*$ algorithm. The conclusion obtained from repeated laboratory experiments with real traffic data in Seoul metropolitan area shows that the integrated approach to finding optimal paths with consideration of various real world constraints provides reasonable solution in a faster way than others.

  • PDF

A Case Study on a Model Refinement in Mathematical Modeling Process (중학생의 수학적 모델링 정교화 과정에 관한 사례 연구)

  • Park, Sle Hee;Shin, Jaehong;Lee, Soo Jin
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.4
    • /
    • pp.657-677
    • /
    • 2014
  • The present qualitative case study explored the ways in which three middle school students constructed and refined their mathematical models and modeling processes, and factors that had influenced such refinement. The results suggest that students' modeling processes are non-sequential in that the participant students reformulated their initial problem from the real-world problem situation and revised the model when they could not get a satisfactory solution or the acquired solution did not make sense. Moreover, the students' model refinement processes were affected by the following four elements: the types of real-word problem situations, students' metacognitive thinking, communications between teachers and peers, and the role of teachers.

  • PDF