Abstract
The optimal path-finding problem becomes complicated when multiple variables are simultaneously considered such as physical route length, degree of congestion, traffic capacity of intersections, number of intersections and lanes, and existence of free ways. Therefore, many researchers in various fields (management science, computer science, applied mathematics, production planning, satellite launching) attempted to solve the problem by ignoring many variables for problem simplification, by developing intelligent algorithms, or by developing high-speed hardware. In this research, an integration of expert system technique and case-based reasoning in high level with a conventional algorithms in lower level was attempted to develop an optimal path-finding system. Early application of experienced driver's knowledge and case data accumulated in case base drastically reduces number of possible combinations of optimal paths by generating promising alternatives and by eliminating non-profitable alternatives. Then, employment of a conventional optimization algorithm provides faster search mechanisms than other methods such as bidirectional algorithm and $A^*$ algorithm. The conclusion obtained from repeated laboratory experiments with real traffic data in Seoul metropolitan area shows that the integrated approach to finding optimal paths with consideration of various real world constraints provides reasonable solution in a faster way than others.