• 제목/요약/키워드: ReRAM switching

검색결과 60건 처리시간 0.03초

Resistive Switching Characteristics of Amorphous GeSe ReRAM without Metalic Filaments Conduction

  • Nam, Gi-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.368.1-368.1
    • /
    • 2014
  • We proposed amorphous GeSe-based ReRAM device of metal-insulator-metal (M-I-M) structure. The operation characteristics of memory device occured unipolar switching characteristics. By introducing the concepts of valance-alternation-pairs (VAPs) and chalcogen vacancies, the unipolar resistive switching operation had been explained. In addition, the current transport behavior were analyzed with space charge effect of VAPs, Schottky emission in metal/GeSe interface and P-F emission by GeSe bulk trap in mind. The GeSe ReRAM device of M-I-M structure indicated the stable memory switching characteristics. Furthermore, excellent stability, endurance and retention characteristics were also verified.

  • PDF

Improved Uniformity of Resistive Switching Characteristics in Ge0.5Se0.5-based ReRAM Device Using the Ag Nanocrystal (Ag Nanocrystal이 적용된 Ge0.5Se0.5-based ReRAM 소자의 Uniformity 특성 향상에 대한 연구)

  • Chung, Hong-Bay;Kim, Jang-Han;Nam, Ki-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제27권8호
    • /
    • pp.491-496
    • /
    • 2014
  • The resistive switching characteristics of resistive random access memory (ReRAM) based on amorphous $Ge_{0.5}Se_{0.5}$ thin films have been demonstrated by using Ti/Ag nanocrystals/$Ge_{0.5}Se_{0.5}$/Pt structure. Ag nanocrystals (Ag NCs) were spread on the amorphous $Ge_{0.5}Se_{0.5}$ thin film and they played the role of metal ions source. As a result, comparing the conventional Ag/$Ge_{0.5}Se_{0.5}$/Pt structure, this Ti/Ag NCs/$Ge_{0.5}Se_{0.5}$/Pt ReRAM device exhibits the highly uniform bipolar resistive switching (BRS) characteristics, such as the operating voltages, and the resistance values. At the same time, a stable DC endurance(> 100 cycles), and the excellent data retention (> $10^4$ sec) properties were found from the Ti/Ag NCs/$Ge_{0.5}Se_{0.5}$/Pt structured ReRAM device.

Improved Uniformity in Resistive Switching Characteristics of GeSe Thin Film by Ag Nanocrystals

  • Park, Ye-Na;Shin, Tae-Jun;Lee, Hyun-Jin;Lee, Ji-Soo;Jeong, Yong-Ki;Ahn, So-Hyun;Lee, On-You;Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.237.2-237.2
    • /
    • 2013
  • ReRAM cell, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of conductive filament in a solid electrolyte [1,2]. Especially, Chalcogenide-based ReRAM have become a promising candidate due to the simple structure, high density and low power operation than other types of ReRAM but the uniformity of switching parameter is undesirable. It is because diffusion of ions from anode to cathode in solid electrolyte layer is random [3]. That is to say, the formation of conductive filament is not go through the same paths in each switching cycle which is one of the major obstacles for performance improvement of ReRAM devices. Therefore, to control of nonuniform conductive filament formation is a key point to achieve a high performance ReRAM. In this paper, we demonstrated the enhanced repeatable bipolar resistive switching memory characteristics by spreading the Ag nanocrystals (Ag NCs) on amorphous GeSe layer compared to the conventional Ag/GeSe/Pt structure without Ag NCs. The Ag NCs and Ag top electrode act as a metal supply source of our devices. Excellent resistive switching memory characteristics were obtained and improvement of voltage distribution was achieved from the Al/Ag NCs/GeSe/Pt structure. At the same time, a stable DC endurance (>100 cycles) and an excellent data retention (>104 sec) properties was found from the Al/Ag NCs/GeSe/ Pt structured ReRAMs.

  • PDF

Field-induced Resistive Switching in Ge25Se75-based ReRAM Device (Ge25Se75-based ReRAM 소자의 전계에 의한 저항 변화에 대한 연구)

  • Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제25권3호
    • /
    • pp.182-186
    • /
    • 2012
  • Resistance-change Random Access Memory(ReRAM) memory, which utilizes electrochemical control of metal in thin films of solid electrolyte, shows great promise as a future solid state memory. The technology utilizes the electrochemical formation and removal of metallic pathways in thin films of solid electrolyte. Key attributes are low voltage and current operation, excellent scalability, and a simple fabrication sequence. In this work, we investigated the nature of thin films formed by photo doping of $Ag^+$ ions into chalcogenide materials for use in solid electrolyte of Resistance-change RAM devices and switching characteristics according to field-effect.

Improved Uniformity of Resistive Switching Characteristics in Ag/HfO2/Pt ReRAM Device by Microwave Irradiation Treatment (Microwave Irradiation 처리를 통한 Ag/HfO2/Pt ReRAM에서의 메모리 신뢰성 향상에 대한 연구)

  • Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제27권2호
    • /
    • pp.81-84
    • /
    • 2014
  • The bipolar resistive switching characteristics of resistive random access memory (ReRAM) based on $HfO_2$ thin films have been demonstrated by using Ag/$HfO_2$/Pt structured ReRAM device. MIcrowave irradiation (MWI) treatment at low temperature was employed in device fabrication with $HfO_2$ thin films as a transition layer. Compared to the as-deposited Ag/$HfO_2$/Pt device, highly improved uniformity characteristics of resistance values and operating voltages were obtained from the MWI treatment Ag/$HfO_2$/Pt ReRAM device. In addition, a stable DC endurance (> 100 cycles) and a high data retention (> $10^4$ sec) were achieved.

Fabrication of PMMA-HfOx Organic-Inorganic Hybrid Resistive Switching Memory (PMMA-HfOx 유-무기 하이브리드 저항변화 메모리 제작)

  • Baek, Il-Jin;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제29권3호
    • /
    • pp.135-140
    • /
    • 2016
  • In this study, we developed the solution-processed PMMA-$HfO_x$ hybrid ReRAM devices to overcome the respective drawbacks of organic and inorganic materials. The performances of PMMA-$HfO_x$ hybrid ReRAM were compared to those of PMMA- and $HfO_x$-based ReRAMs. Bipolar resistive switching behavior was observed from these ReRAMs. The PMMA-$HfO_x$ hybrid ReRAMs showed a larger operation voltage margin and memory window than PMMA-based and $HfO_x$-based ReRAMs. The reliability and electrical instability of ReRAMs were remarkably improved by blending the $HfO_x$ into PMMA. An Ohmic conduction path was commonly generated in the LRS (low resistance state). In HRS (high resistance state), the PMMA-based ReRAM showed SCLC (space charge limited conduction). the PMMA-$HfO_x$ hybrid ReRAM and $HfO_x$-based ReRAM revealed the Pool-Frenkel conduction. As a result of flexibility test, serious defects were generated in $HfO_x$ film deposited on PI (polyimide) substrate. On the other hand, the PMMA and PMMA-$HfO_x$ films showed an excellent flexibility without defect generation.

Electrical Switching Characteristics of Ge-Se Thin Films for ReRAM Cell Applications

  • Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.343-344
    • /
    • 2012
  • It has been known since the mid 1960s that Ag can be photodissolved in chalcogenide glasses to form materials with interesting technological properties. In the 40 years since, this effect has been used in diverse applications such as the fabrication of relief images in optical elements, micro photolithographic schemes, and for direct imaging by photoinduced Ag surface deposition. ReRAM, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of a conductive filament in a solid electrolyte. Especially, Ag-doped chalcogenide glasses and thin films have become attractive materials for fundamental research of their structure, properties, and preparation. Ag-doped chalcogenide glasses have been used in the formation of solid electrolyte which is the active medium in ReRAM devices. In this paper, we investigated the nature of thin films formed by the photo-dissolution of Ag into Ge-Se glasses for use in ReRAM devices. These devices rely on ion transport in the film so produced to create electrically programmable resistance states. [1-3] We have demonstrated functionalities of Ag doped chalcogenide glasses based on their capabilities as solid electrolytes. Formation of such amorphous systems by the introduction of Ag+ ions photo-induced diffusion in thin chalcogenide films is considered. The influence of Ag+ ions is regarded in terms of diffusion kinetics and Ag saturation is related to the composition of the hosting material. Saturated Ag+ ions have been used in the formation of conductive filaments at the solid electrolyte which is the active medium in ReRAM devices. Following fabrication, the cell displays a metal-insulator-metal structure. We measured the I-V characteristics of a cell, similar results were obtained with different via sizes, due to the filamentary nature of resistance switching in ReRAM cell. As the voltage is swept from 0 V to a positive top electrode voltage, the device switches from a high resistive to a low resistive, or set. The low conducting, or reset, state can be restored by means of a negative voltage sweep where the switch-off of the device usually occurs.

  • PDF

Operating Characteristics of Amorphous GeSe-based Resistive Random Access Memory at Metal-Insulator-Silicon Structure (금속-절연층-실리콘 구조에서의 비정질 GeSe 기반 Resistive Random Access Memory의 동작 특성)

  • Nam, Ki-Hyun;Kim, Jang-Han;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제29권7호
    • /
    • pp.400-403
    • /
    • 2016
  • The resistive memory switching characteristics of resistive random access memory (ReRAM) using the amorphous GeSe thin film have been demonstrated at Al/Ti/GeSe/$n^+$ poly Si structure. This ReRAM indicated bipolar resistive memory switching characteristics. The generation and the recombination of chalcogen cations and anions were suitable to explain the bipolar switching operation. Space charge limited current (SCLC) model and Poole-Frenkel emission is applied to explain the formation of conductive filament in the amorphous GeSe thin film. The results showed characteristics of stable switching and excellent reliability. Through the annealing condition of $400^{\circ}C$, the possibility of low temperature process was established. Very low operation current level (set current: ~ ${\mu}A$, reset current: ~ nA) was showed the possibility of low power consumption. Particularly, $n^+$ poly Si based GeSe ReRAM could be applied directly to thin film transistor (TFT).

A Review: Comparison of Fabrication and Characteristics of Flexible ReRAM and Multi-Insulating Graphene Oxide Layer ReRAM (산화 그래핀을 절연층으로 사용한 유연한 ReRAM과 다층 절연층 ReRAM의 제작 방법 및 결과 비교)

  • Kim, Dong-Kyun;Kim, Taeheon;Yoon, Taehwan;Pak, James Jungho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제65권8호
    • /
    • pp.1369-1375
    • /
    • 2016
  • A rapid progress of the next-generation non-volatile memory device has been made in recent years. Metal/insulator/Metal multi-layer structure resistive RAM(ReRAM) has attracted a great deal of attention because it has advantages of simple fabrication, low cost, low power consumption, and low operating voltage. This paper describes the working principle of the ReRAM device, a review of fabrication techniques, and characteristics of flexible ReRAM devices using graphene oxide as an insulating layer and ReRAM devices using multi-layered insulator. The switching characteristics of the above ReRAM devices have been compared. The oxidized graphene could be employed as an insulator of next generation ReRAM devices.

Resistive Memory Switching in Ge5Se5 Thin Films

  • Kim, Jang-Han;Hwang, Yeong-Hyeon;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.326-326
    • /
    • 2014
  • It has been known since the mid 1960s that Ag can be photodissolved in chalcogenide glasses to form materials with interesting technological properties. In the 40 years since, this effect has been used in diverse applications such as the fabrication of relief images in optical elements, micro photolithographic schemes, and for direct imaging by photoinduced Ag surface deposition. ReRAM, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of a conductive filament in a solid electrolyte. Especially, Ag-doped chalcogenide glasses and thin films have become attractive materials for fundamental research of their structure, properties, and preparation. Ag-doped chalcogenide glasses have been used in the formation of solid electrolyte which is the active medium in ReRAM devices. In this paper, we investigated the nature of thin films formed by the photo-dissolution of Ag into Ge-Se glasses for use in ReRAM devices. These devices rely on ion transport in the film so produced to create electrically programmable resistance states [1-3]. We have demonstrated functionalities of Ag doped chalcogenide glasses based on their capabilities as solid electrolytes. Formation of such amorphous systems by the introduction of Ag+ ions photo-induced diffusion in thin chalcogenide films is considered. The influence of Ag+ ions is regarded in terms of diffusion kinetics and Ag saturation is related to the composition of the hosting material. Saturated Ag+ ions have been used in the formation of conductive filaments at the solid electrolyte which is the active medium in ReRAM devices. Following fabrication, the cell displays a metal-insulator-metal structure. We measured the I-V characteristics of a cell, similar results were obtained with different via sizes, due to the filamentary nature of resistance switching in ReRAM cell. As the voltage is swept from 0 V to a positive top electrode voltage, the device switches from a high resistive to a low resistive, or set. The low conducting, or reset, state can be restored by means of a negative voltage sweep where the switch-off of the device usually occurs.

  • PDF