DOI QR코드

DOI QR Code

Improved Uniformity of Resistive Switching Characteristics in Ag/HfO2/Pt ReRAM Device by Microwave Irradiation Treatment

Microwave Irradiation 처리를 통한 Ag/HfO2/Pt ReRAM에서의 메모리 신뢰성 향상에 대한 연구

  • Kim, Jang-Han (Department of Electrical Materials Engineering, Kwangwoon University) ;
  • Nam, Ki-Hyun (Department of Electrical Materials Engineering, Kwangwoon University) ;
  • Chung, Hong-Bay (Department of Electrical Materials Engineering, Kwangwoon University)
  • 김장한 (광운대학교 전자재료공학과) ;
  • 남기현 (광운대학교 전자재료공학과) ;
  • 정홍배 (광운대학교 전자재료공학과)
  • Received : 2014.01.14
  • Accepted : 2014.01.24
  • Published : 2014.02.01

Abstract

The bipolar resistive switching characteristics of resistive random access memory (ReRAM) based on $HfO_2$ thin films have been demonstrated by using Ag/$HfO_2$/Pt structured ReRAM device. MIcrowave irradiation (MWI) treatment at low temperature was employed in device fabrication with $HfO_2$ thin films as a transition layer. Compared to the as-deposited Ag/$HfO_2$/Pt device, highly improved uniformity characteristics of resistance values and operating voltages were obtained from the MWI treatment Ag/$HfO_2$/Pt ReRAM device. In addition, a stable DC endurance (> 100 cycles) and a high data retention (> $10^4$ sec) were achieved.

Keywords

References

  1. S. Peng, F. Zhuge, X. Chen, X. Zhu, and B. Hu, Appl. Phys. Lett., 100, 072101 (2012). https://doi.org/10.1063/1.3683523
  2. M. Kund., G. Beitel, C. U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk, K. D. Ufert, and G. Muller, IEDM Tech. Dig., 773 (2005).
  3. U. Russo, D. Kamalanathan, D. Ielmini, A. L. Lacaita, and M. N. Kozicki, IEEE Trans. Electron Dev. Lett., 56, 1040 (2009). https://doi.org/10.1109/TED.2009.2016019
  4. C. Schindler, S.C.P. Thermandam, R. Waser, and M. N. Kozicki, IEEE Trans. Electron Dev. Lett., 54, 2762 (2007). https://doi.org/10.1109/TED.2007.904402
  5. S. Z. Rahaman, S. Maikap, W. S. Chen, H. Y. Lee, F. T. Chen, M. J. Kao, and M. J. Tsai, Appl. Phys. Lett., 101, 092100 (2012).
  6. T. Nagata, M. Haemori, Y. Yamashita, H. Yoshikawa, Y. Iwashita, K. Kobayashi, and T. Chikyow, Appl. Phys. Lett., 99, 223517 (2011). https://doi.org/10.1063/1.3664781
  7. Q. Liu, S. Long, H. Lv, W. Wang, J. Niu, Z. Huo, J. Chen, and M. Liu, ACS Nano., 4, 6162 (2010). https://doi.org/10.1021/nn1017582
  8. K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, Nature, 433, 47 (2005). https://doi.org/10.1038/nature03190
  9. J. R. Jameson, N. Gilbert, F. Koushan, J. Saenz, J. Wang, S. Hollmer, and M. N. Kozicki, Appl. Phys. Lett., 99, 063506 (2011). https://doi.org/10.1063/1.3623485
  10. J. H. Kim, K. H. Nam, and H. B. Chung, J. KIEEME, 25, 182 (2012).
  11. S. Z. Rahaman, S. Maikap, T. C. Tien, H. Y. Lee, W. S. Chen, F. Chen, M. J. Kao, and M. J. Tsai, Nanoscale Res. Lett., 7, 345 (2012). https://doi.org/10.1186/1556-276X-7-345
  12. Y. Wang, Q. Liu, S. Long, W. Wang, Q. Wang, M. Zhang, S. Zhang, Y. Li, Q. Zuo, J. Yang, and M. Liu, Nanotechnology, 21, 045202 (2010). https://doi.org/10.1088/0957-4484/21/4/045202
  13. C. Park, S. H. Jeon, S. C. Chae, S. Han, B. H. Park, S. Seo, and D. W. Kim, Appl. Phys. Lett., 93, 042102 (2008). https://doi.org/10.1063/1.2963983
  14. J. W. Park, K. Jung, M. H. Yang, and J. K. Lee, J. Vac. Sci. Techno. B, 24, 220 (2006).
  15. J. Yoon, H. Choi, D. Lee, J. B. Park, J. Lee, D. J. Seong, Y. Ju, M. Chang, S. Jung, and H. Hwang, IEEE Trans. Electron Dev. Lett., 30, 457 (2009). https://doi.org/10.1109/LED.2009.2015687
  16. P. T. Liu, L. W. Chu, L. F. Teng, Y. S. Fan, and C. S. Fuh, ECS Transactions, 50, 257 (2012).