DOI QR코드

DOI QR Code

Improved Uniformity of Resistive Switching Characteristics in Ge0.5Se0.5-based ReRAM Device Using the Ag Nanocrystal

Ag Nanocrystal이 적용된 Ge0.5Se0.5-based ReRAM 소자의 Uniformity 특성 향상에 대한 연구

  • Chung, Hong-Bay (Department of Electrical Materials Engineering, Kwangwoon University) ;
  • Kim, Jang-Han (Department of Electrical Materials Engineering, Kwangwoon University) ;
  • Nam, Ki-Hyun (Department of Electrical Materials Engineering, Kwangwoon University)
  • 정홍배 (광운대학교 전자재료공학과) ;
  • 김장한 (광운대학교 전자재료공학과) ;
  • 남기현 (광운대학교 전자재료공학과)
  • Received : 2014.07.08
  • Accepted : 2014.07.18
  • Published : 2014.08.01

Abstract

The resistive switching characteristics of resistive random access memory (ReRAM) based on amorphous $Ge_{0.5}Se_{0.5}$ thin films have been demonstrated by using Ti/Ag nanocrystals/$Ge_{0.5}Se_{0.5}$/Pt structure. Ag nanocrystals (Ag NCs) were spread on the amorphous $Ge_{0.5}Se_{0.5}$ thin film and they played the role of metal ions source. As a result, comparing the conventional Ag/$Ge_{0.5}Se_{0.5}$/Pt structure, this Ti/Ag NCs/$Ge_{0.5}Se_{0.5}$/Pt ReRAM device exhibits the highly uniform bipolar resistive switching (BRS) characteristics, such as the operating voltages, and the resistance values. At the same time, a stable DC endurance(> 100 cycles), and the excellent data retention (> $10^4$ sec) properties were found from the Ti/Ag NCs/$Ge_{0.5}Se_{0.5}$/Pt structured ReRAM device.

Keywords

References

  1. G. I. Meijer, Science, 319, 1625 (2008). https://doi.org/10.1126/science.1153909
  2. R. Waser and M. Aono, Nat. Matter., 6, 833 (2007). https://doi.org/10.1038/nmat2023
  3. S. Z Rahaman, S. Maikap, A. Das, A. Prakash, Y. H. Wu, C. S. Lai, T. C Tien, W. S. Chen, H. Y. Lee, F. T. Chen, M. J. Tsai, and L. B. Chang, Nanoscale Res. Lett., 7, 614 (2012). https://doi.org/10.1186/1556-276X-7-614
  4. J. H. Kim, K. H. Nam, and H. B. Chung, J. KIEEME, 25, 182 (2012).
  5. K. H. Nam, J. H. Kim, W. J. Cho, and H. B. Chung, Appl. Phys. Lett., 102, 192106 (2013). https://doi.org/10.1063/1.4804557
  6. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Matter., 21, 2632 (2009). https://doi.org/10.1002/adma.200900375
  7. Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, Nano Lett., 9, 1636 (2009). https://doi.org/10.1021/nl900006g
  8. C. Y. Lin, C. Y. Wu, T. C. Lee, F. L. Yang, C. Hu, and T. Y. Tseng, IEEE Electron Devices Lett., 30, 1335 (2009). https://doi.org/10.1109/LED.2009.2032566
  9. J. Yoon, H. Choi, D. Lee, J. B. Park, J. Lee, D. J. Seong, Y. Ju, M. Chang, S. Jung, and H. Hwang, IEEE Electron Lett., 30, 457 (2009). https://doi.org/10.1109/LED.2009.2015687
  10. K. W. Zhang, S. B. Long, Q. Liu, H. B. Lu, Y. T Li, Y. Wang, W. T. Lian, M. Wang, S. Zhang, and M. Liu, Science China, 54, 811 (2011). https://doi.org/10.1007/s11431-010-4240-9
  11. H. H. Lee, K. S. Chou, and K. C. Huang, Nanotechnology, 16, 2436 (2005). https://doi.org/10.1088/0957-4484/16/10/074
  12. D. Wang, L. Liu, Y. Kim, Z. Huang, D. Pantel, D. Hesse, and M. Alexe, Appl. Phys. Lett., 98, 243109 (2011). https://doi.org/10.1063/1.3595944