DOI QR코드

DOI QR Code

Operating Characteristics of Amorphous GeSe-based Resistive Random Access Memory at Metal-Insulator-Silicon Structure

금속-절연층-실리콘 구조에서의 비정질 GeSe 기반 Resistive Random Access Memory의 동작 특성

  • Nam, Ki-Hyun (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Kim, Jang-Han (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Chung, Hong-Bay (Department of Electronic Materials Engineering, Kwangwoon University)
  • 남기현 (광운대학교 전자재료공학과) ;
  • 김장한 (광운대학교 전자재료공학과) ;
  • 정홍배 (광운대학교 전자재료공학과)
  • Received : 2016.05.30
  • Accepted : 2016.06.24
  • Published : 2016.07.01

Abstract

The resistive memory switching characteristics of resistive random access memory (ReRAM) using the amorphous GeSe thin film have been demonstrated at Al/Ti/GeSe/$n^+$ poly Si structure. This ReRAM indicated bipolar resistive memory switching characteristics. The generation and the recombination of chalcogen cations and anions were suitable to explain the bipolar switching operation. Space charge limited current (SCLC) model and Poole-Frenkel emission is applied to explain the formation of conductive filament in the amorphous GeSe thin film. The results showed characteristics of stable switching and excellent reliability. Through the annealing condition of $400^{\circ}C$, the possibility of low temperature process was established. Very low operation current level (set current: ~ ${\mu}A$, reset current: ~ nA) was showed the possibility of low power consumption. Particularly, $n^+$ poly Si based GeSe ReRAM could be applied directly to thin film transistor (TFT).

Keywords

References

  1. H. Y. Jeong and J. Y. Lee, Physica Status Solidi, 4, 28 (2010). [DOI: http://dx.doi.org/10.1002/pssr.200903383]
  2. D. S. Jeong, H. Schroeder, and R. Waser, Electrochem. and Solid-State Lett., 10, G51 (2007). [DOI: http://dx.doi.org/10.1149/1.2742989]
  3. E. Linn, R. Rosezin, C. Kugeler, and R. Waser, Nature Materials, 9, 403 (2010). [DOI: http://dx.doi.org/10.1038/nmat2748]
  4. M. Mitkova and M. N. Kozicki, J. Non-cryst. Sol., 299, 1023 (2002).
  5. Q. Liu, W. Guan, S. Long, M. Liu, S. Zhang, Q. Wang, and J. Chen, Appl. Phys. Lett., 104, 114514 (2008).
  6. S. H. Won and K. W. Lee, Electron. Mater. Lett., 4, 29 (2008).
  7. S. Spiga, A. Lamperti, C. Wiemer, M. Perego, E. Cianci, G. Tallarida, H. L. Lu, M. Alia, F. G. Volpe, and M. Fanciulli, Microelectron. Eng., 82, 2414 (2008). [DOI: http://dx.doi.org/10.1016/j.mee.2008.09.018]
  8. Q. Liu, W. Guan, S. Long, M. Liu, S. Zhang, Q. Wang, and J. Chen, J. Appl. Phys., 104, 114514 (2008). [DOI: http://dx.doi.org/10.1063/1.3033561]
  9. M. Kastner, D. Adler and H. Fritzsche, Physical Review Lett., 37, 1504 (1976). [DOI: http://dx.doi.org/10.1103/PhysRevLett.37.1504]
  10. R. C. Frye and D. Adler, Physical Review B, 24, 5812 (1981). [DOI: http://dx.doi.org/10.1103/PhysRevB.24.5812]
  11. J. Sworakowski, J. Appl. Phys., 51, 4 (1980).
  12. R. H. Parmenter and W. Ruppel, J. Appl. Phys., 30, 1548 (1959). [DOI: http://dx.doi.org/10.1063/1.1734999]
  13. M. H. Robert, Philosophical Magazine, 23, 181 (1971).