• Title/Summary/Keyword: Rab25

Search Result 10, Processing Time 0.026 seconds

Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice

  • Jeong, Haengdueng;Lim, Kyung-Min;Goldenring, James R.;Nam, Ki Taek
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.553-561
    • /
    • 2019
  • Rab25, a member of the Rab11 small GTPase family, is central to achieving cellular polarity in epithelial tissues. Rab25 is highly expressed in epithelial cells of various tissues including breast, vagina, cervix, the gastrointestinal tract, and skin. Rab25 plays key roles in tumorigenesis, mainly by regulating epithelial differentiation and proliferation. However, its role in skin physiology is relatively unknown. In this study, we demonstrated that Rab25 knock-out (KO) mice show a skin barrier dysfunction with high trans-epidermal water loss and low cutaneous hydration. To examine this observation, we investigated the histology and epidermal differentiation markers of the skin in Rab25 KO mice. Rab25 KO increased cell proliferation at the basal layer of epidermis, whereas the supra-basal layer remained unaffected. Ceramide, which is a critical lipid component for skin barrier function, was not altered by Rab25 KO in its distribution or amount, as determined by immunohistochemistry. Notably, levels of epidermal differentiation markers, including loricrin, involucrin, and keratins (5, 14, 1, and 10) increased prominently in Rab25 KO mice. In line with this, depletion of Rab25 with single hairpin RNA increased the expression of differentiation markers in a human keratinocyte cell line, HaCaT. Transcriptomic analysis of the skin revealed increased expression of genes associated with skin development, epidermal development, and keratinocyte differentiation in Rab25 KO mice. Collectively, these results suggested that Rab25 is involved in the regulation of epidermal differentiation and proliferation.

Leucine-rich Repeat Kinase 2 (LRRK2) Phosphorylates Rab10 in Glia and Neurons

  • Ho, Dong Hwan;Nam, Daleum;Seo, Mi Kyoung;Park, Sung Woo;Son, Ilhong;Seol, Wongi
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.177-184
    • /
    • 2019
  • Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD). LRRK2 contains a functional kinase and GTPase domains. A pathogenic G2019S mutation that is the most prevalent among the LRRK2 mutations and is also found in sporadic cases, increases its kinase activity. Therefore, identification of LRRK2 kinase substrates and the development of kinase inhibitors are under intensive investigation to find PD therapeutics. Several recent studies have suggested members of Rab proteins, a branch of the GTPase superfamily, as LRRK2 kinase substrates. Rab proteins are key regulators of cellular vesicle trafficking. Among more than 60 members of human Rab proteins, Rab3, Rab5, Rab8, Rab10, Rab12, Rab29, Rab35, and Rab43 have been identified as LRRK2 kinase substrates. However, most studies have used human embryonic kidney (HEK) 293T cells overexpressing LRRK2/Rab proteins or murine embryonic fibroblast (MEF) cells which are not relevant to PD, rather than neuronal cells. In this study, we tested whether Rab proteins are phosphorylated by LRRK2 in astroglia in addition to neurons. Among the various Rab substrates, we tested phosphorylation of Rab10, because of the commercial availability and credibility of the phospho-Rab10 (pRab10) antibody, in combination with a specific LRRK2 kinase inhibitor. Based on the results of specific LRRK2 kinase inhibitor treatment, we concluded that LRRK2 phosphorylates Rab10 in the tested brain cells such as primary neurons, astrocytes and BV2 microglial cells.

Prediction of male fertility using Ras-related proteins

  • Jeong-Won, Bae;Ju-Mi, Hwang;Woo-Sung, Kwon
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1024-1034
    • /
    • 2022
  • Identifying effective biomarkers for the diagnosis of male fertility is crucial for improving animal production and treating male infertility in humans. Ras-related proteins (Rab) are associated with morphological and motion kinematic functions in spermatozoa. Moreover, Rab2A, a Rab protein, is a possible male fertility-related biomarker. The present study was designed to identify additional fertility-related biomarkers among the various Rab proteins. First, the expression of Rab proteins (Rab3A, 4, 5, 8A, 9, 14, 25, 27A, and 34A) from 31 duroc boar spermatozoa was measured before and after capacitation; correlation between Rab protein expression and litter size was evaluated by statistical analysis. The results showed that the expression of Rab3A, 4, 5, 8A, 9, and 25 before capacitation and Rab3A, 4, 5, 8A, 9, and 14 after capacitation were negatively correlated with litter size. Moreover, depending on the cutoff values calculated by receiver operating curves, an increase in litter size was observed when evaluating the ability of the Rab proteins to forecast litter size. Therefore, we suggest that Rab proteins may be potential fertility-related biomarkers that could help select superior sires in the livestock industry.

A STUDY ON THE LOCATIONS OF THE ROYAL ASTRONOMICAL BUREAU AND THE ROYAL ASTRONOMICAL OBSERVATORY IN THE JOSEON DYNASTY (조선시대 관상감과 관천대의 위치 변천에 대한 연구)

  • Mihn, B.H.;Lee, K.W.;Ahn, Y.S.;Lee, Y.S.
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2010
  • In the beginning of the Joseon dynasty, the Royal Astronomical Bureau (觀象監, shortly RAB) was established. After the double RAB had settled down by King Sejong (世宗), it continued to function until 1907. Before the Japanese invasion of Korea in 1592, the Joseon court had the Inner RAB in the Gyeongbok Palace (景福宮) and the Outer RAB in the Northen District Gwangwha-Bang (北部廣化坊) at the western side of the Changdeuk Palace (昌德宮). In the reign of King Sukjong (肅宗) the double system of the RAB was transformed into the Geumho-Gate (金虎門) Outer RAB and the Gaeyang-Gate (開陽門) Outer RAB. During the reconstruction of the Gyeongbok Palace in the early reign of King Gojong (高宗), the Gaeyang-Gate Outer RAB was replaced by the Yeongchu-Gate (迎秋門) Outer RAB in 1865. All RAB had the Royal Astronomical Observatory (觀天臺, RAO hereinafter), so called the Soganui-platform (小簡儀臺) on which the Soganui (小簡儀) has been put. The Soganui (小簡儀) is a small simplified armillary sphere. While the Gwangwha-Bang RAO handed down from the reign of King Sejong still exists, other RAOs, such as Gyeongbok Palace RAO, Gaeyang-Gate and Yeongchu-Gate RAOs, do not remain. According to our study, the Changgyeong Palace (昌慶宮) RAO was not indeed the RAO with the Soganui.

Durability of Mortar Matrix Replaced with Recycled Fine Aggregates (순환골재(循環骨材)를 혼입(混入)한 모르타르 경화체(硬化體)의 내구(耐久) 특성(特性))

  • Kim, Jong-Pil;Lee, Seung-Tae;Jung, Ho-Seop;Park, Kwang-Pil;Kim, Seong-Soo
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.20-27
    • /
    • 2007
  • This paper presents a detailed experimental study on the durability properties of mortar matrix made with two kind of recycled fine aggregates(RAA, RAB) and five replacement levels (0, 25, 40, 75 and 100) of the recycled fine aggregates as a partial replacement of natural fine aggregate (NA). The durability properties of mortar matrix was evaluated using compressive strength, chloride ion ingress, sulfate attack and carbonation. The test results indicated that the water absorption and Adhered mortar of the recycled fine aggregate was a major factor controlling durability properties. Hereafter, when using built recycled fine aggregate is expected, appropriate removal Adhered mortar and reasonable replacement ratio of recycled fine aggregates was 25% weight of cement are advised to apply to the concrete materials.

Whitening effects of fermented Trigonotis radicans var. sericea with Lactobacillus brevis in α-MSH-stimulated B16F10 melanoma cells

  • Da-Eun Jeong;Byung-Oh Kim;Young-Je Cho
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.227-234
    • /
    • 2024
  • This study was designed to compare the whitening effects of 60% ethanol extracts of Trigonotis radicans var. sericea (TR) and Lactobacillus brevis-fermented T. radicans var. sericea (FTR). Measurement of cytotoxicity in B16-F10 melanoma cells to confirm the whitening effect, FTR showed higher cell viability than TR. FTR showed inhibitory activity on melanin contents similar to the normal group at concentrations of 50 and 100 ㎍/mL. MITF expression was used to confirm the effect on melanogenesis-related protein expression. TR and FTR showed significant concentration-dependent decrease, and FTR showed lower expressions than the normal group at concentrations of 25, 50, and 100 ㎍/mL. Additionally, the mRNA expression of melanogenesis-related genes (MC1R, Rab27a, TGF-β1 and Myo5a) were measured by RT-qPCR to confirm the whitening effect. In MC1R expression at a concentration of 100 ㎍/mL in FTR showed effective inhibitory activities, and in TGF-β1 expression, TR and FTR both showed effective activities compared to normal groups even at low concentrations. Results of myo5a and Rab27a, a similar pattern was shown, and FTR showed effective inhibitory activities at a concentration of 100 ㎍/mL. As a result, FTR had higher whitening effects through bioconversion and is expected to be a good material for whitening functional cosmetics.

Proteomic Analysis and the Antimetastatic Effect of N-(4methyl)phenyl-O-(4-methoxy) phenyl-thionocarbamate-Induced Apoptosis in Human Melanoma SK-MEL-28 cells

  • Choi Su-La;Choi Yun-Sil;Kim Young-Kwan;Sung Nack-Do;Kho Chang-Won;Park Byong-Chul;Kim Eun-Mi;Lee Jung-Hyung;Kim Kyung-Mee;Kim Min-Yung;Myung Pyung-Keun
    • Archives of Pharmacal Research
    • /
    • v.29 no.3
    • /
    • pp.224-234
    • /
    • 2006
  • We employed human SK-MEL-28 cells as a model system to identify cellular proteins that accompany N-(4-methyl)phenyl-O-(4-methoxy)phenyl-thionocarbamate (MMTC)-induced apoptosis based on a proteomic approach. Cell viability tests revealed that SK-MEL-28 skin cancer cells underwent more cell death than normal HaCaT cells in a dose-dependent manner after treatment with MMTC. Two-dimensional electrophoresis in conjunction with matrixassisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry analysis or computer matching with a protein database further revealed that the MMTC-induced apoptosis is accompanied by increased levels of caspase-1, checkpoint suppressor-1, caspase-4, NF-kB inhibitor, AP-2, c-Jun-N-terminal kinase, melanoma inhibitor, granzyme K, G1/S specific cyclin D3, cystein rich protein, Ras-related protein Rab-37 or Ras-related protein Rab-13, and reduced levels of EMS (oncogene), ATP synthase, tyrosine-phosphatase, Cdc25c, 14-3-3 protein or specific structure of nuclear receptor. The migration suppressing effect of MMTC on SK-MEL-28 cell was tested. MMTC suppressed the metastasis of SK-MEL-8 cells. It was also identified that MMTC had little angiogenic effect because it did not suppress the proliferation of HUVEC cell line. These results suggest that MMTC is a novel chemotherapeutic and metastatic agents against the SK-MEL-28 human melanoma cell line.

Phelan-McDermid syndrome presenting with developmental delays and facial dysmorphisms

  • Kim, Yoon-Myung;Choi, In-Hee;Kim, Jun Suk;Kim, Ja Hye;Cho, Ja Hyang;Lee, Beom Hee;Kim, Gu-Hwan;Choi, Jin-Ho;Seo, Eul-Ju;Yoo, Han-Wook
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.sup1
    • /
    • pp.25-28
    • /
    • 2016
  • Phelan-McDermid syndrome is a rare genetic disorder caused by the terminal or interstitial deletion of the chromosome 22q13.3. Patients with this syndrome usually have global developmental delay, hypotonia, and speech delays. Several putative genes such as the SHANK3, RAB, RABL2B, and IB2 are responsible for the neurological features. This study describes the clinical features and outcomes of Korean patients with Phelan-McDermid syndrome. Two patients showing global developmental delay, hypotonia, and speech delay were diagnosed with Phelan-McDermid syndrome via chromosome analysis, fluorescent in situ hybridization, and multiplex ligation-dependent probe amplification analysis. Brain magnetic resonance imaging of Patients 1 and 2 showed delayed myelination and severe communicating hydrocephalus, respectively. Electroencephalography in patient 2 showed high amplitude spike discharges from the left frontotemporoparietal area, but neither patient developed seizures. Kidney ultrasonography of both the patients revealed multicystic kidney disease and pelviectasis, respectively. Patient 2 experienced recurrent respiratory infections, and chest computed tomography findings demonstrated laryngotracheomalacia and bronchial narrowing. He subsequently died because of heart failure after a ventriculoperitoneal shunt operation at 5 months of age. Patient 1, who is currently 20 months old, has been undergoing rehabilitation therapy. However, global developmental delay was noted, as determines using the Korean Infant and Child Development test, the Denver developmental test, and the Bayley developmental test. This report describes the clinical features, outcomes, and molecular genetic characteristics of two Korean patients with Phelan-McDermid syndrome.

The Significance of Acetylcholine Receptor Autoantibody Test (아세틸콜린 수용체 항체(Acetylcholine receptor autoantibody) 검사의 의의)

  • Yoo, Soh-Yeon;Lim, Soo-Yeon;Pack, Song-Ran;Seo, Mi-Hye;Moon, Hyung-Ho;You, Sun-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.113-116
    • /
    • 2011
  • Purpose: Acetylcholine receptor antibodies cause acetylcholine receptor loss, which is responsible for failure of the neuromuscular junction in the acetylcholine receptor autoantibody. The disease characterized by muscle weakness and fatigue, myasthenia gravis(MG) occurs when the body inappropriately produces antibodies against acetylcholine receptors, and thus inhibits proper acetylcholine signal transmission. And this reason, the measurement of acetylcholine receptor antibodies can be of considerable value in disease diagnosis. Methods: From 2010. August to September, we tested orderd AchRAb 19 samples to get the results. 1. Pipette $5{\mu}{\ell}$ undiluted patient sera and kit control and add 125I AChR $50{\mu}{\ell}$ and incubate at R.T for 2 hours. 2. Pipette $50{\mu}{\ell}$ of anti-human IgG into each tube, and incubate at $2{\sim}8^{\circ}C$ for 2 hours. 3. Pipette $25{\mu}{\ell}$ precipitation enhancer into each tube and add 1mL washing solution into all tubes. 4. Centrifuge each tube for 20minutes at $2{\sim}8^{\circ}C$ at 1500g. 5. Aspirate or decant the supernatant. 6. Pipette 1 mL washing solution into all tubes and resuspend the pellet and repeat centrifugation. 7. Aspirate or decant the supernatant and count all tubes on a gamma counter. Results: Cut off value is 0.2 nmol/L and the results taken below 0.2 nmol/L are negative, the results above that identified as being positive values. We assayed the 19 patients samples and got 7 positive results. Of which, 6 patients were diagnosed as MG.(85.7%). Conclusions: Acetylcholine Receptor autoantibody test is intended for use by persons only for the quantitative determination of it in human serum. Even if measurement of the antibodies is not a routine test, it can be of considerable value in disease diagnosis.

  • PDF

Identification of Genes Modulated by High Extracellular Calcium in Coculture of Mouse Osteoblasts and Bone Marrow Cells by Oligo Chip Assay

  • Kim, Hyung-Keun;Song, Mi-Na;Jun, Ji-Hae;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.31 no.2
    • /
    • pp.53-65
    • /
    • 2006
  • Calcium concentration in the bone resorption lacunae is high and is in the mM concentration range. Both osteoblast and osteoclast have calcium sensing receptor in the cell surface, suggesting the regulatory role of high extracellular calcium in bone metabolism. In vitro, high extracellular calcium stimulated osteoclastogenesis in coculture of mouse osteoblasts and bone marrow cells. Therefore we examined the genes that were commonly regulated by both high extracellular calcium and $1,25(OH)_2vitaminD_3(VD3)$ by using mouse oligo 11 K gene chip. In the presence of 10 mM $[Ca^{2+}]e$ or 10 nM VD3, mouse calvarial osteoblasts and bone marrow cells were co-cultured for 4 days when tartrate resistant acid phosphatase-positive multinucleated cells start to appear. Of 11,000 genes examined, the genes commonly regulated both by high extracellular calcium and by VD3 were as follows; 1) the expression of genes which were osteoclast differentiation markers or were associated with osteoclastogenesis were up-regulated both by high extracellular calcium and by VD3; trap, mmp9, car2, ctsk, ckb, atp6b2, tm7sf4, rab7, 2) several chemokine and chemokine receptor genes such as sdf1, scya2, scyb5, scya6, scya8, scya9, and ccr1 were up-regulated both by high extracellular calcium and by VD3, 3) the genes such as mmp1b, mmp3 and c3 which possibly stimulate bone resorption by osteoclast, were commonly up-regulated, 4) the gene such as c1q and msr2 which were related with macrophage function, were commonly down-regulated, 5) the genes which possibly stimulate osteoblast differentiation and/or mineralization of extracellular matrix, were commonly down-regulated; slc8a1, admr, plod2, lox, fosb, 6) the genes which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were commonly up-regulated; s100a4, npr3, mme, 7) the genes such as calponin 1 and tgfbi which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were up-regulated by high extracellular calcium but were down-regulated by VD3. These results suggest that in coculture condition, both high extracellular calcium and VD3 commonly induce osteoclastogenesis but suppress osteoblast differentiation/mineralization by regulating the expression of related genes.