DOI QR코드

DOI QR Code

Leucine-rich Repeat Kinase 2 (LRRK2) Phosphorylates Rab10 in Glia and Neurons

  • Ho, Dong Hwan (InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University) ;
  • Nam, Daleum (InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University) ;
  • Seo, Mi Kyoung (Paik Institute for Clinical Research, Inje University College of Medicine) ;
  • Park, Sung Woo (Paik Institute for Clinical Research, Inje University College of Medicine) ;
  • Son, Ilhong (InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University) ;
  • Seol, Wongi (InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University)
  • Received : 2019.04.19
  • Accepted : 2019.06.13
  • Published : 2019.06.30

Abstract

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD). LRRK2 contains a functional kinase and GTPase domains. A pathogenic G2019S mutation that is the most prevalent among the LRRK2 mutations and is also found in sporadic cases, increases its kinase activity. Therefore, identification of LRRK2 kinase substrates and the development of kinase inhibitors are under intensive investigation to find PD therapeutics. Several recent studies have suggested members of Rab proteins, a branch of the GTPase superfamily, as LRRK2 kinase substrates. Rab proteins are key regulators of cellular vesicle trafficking. Among more than 60 members of human Rab proteins, Rab3, Rab5, Rab8, Rab10, Rab12, Rab29, Rab35, and Rab43 have been identified as LRRK2 kinase substrates. However, most studies have used human embryonic kidney (HEK) 293T cells overexpressing LRRK2/Rab proteins or murine embryonic fibroblast (MEF) cells which are not relevant to PD, rather than neuronal cells. In this study, we tested whether Rab proteins are phosphorylated by LRRK2 in astroglia in addition to neurons. Among the various Rab substrates, we tested phosphorylation of Rab10, because of the commercial availability and credibility of the phospho-Rab10 (pRab10) antibody, in combination with a specific LRRK2 kinase inhibitor. Based on the results of specific LRRK2 kinase inhibitor treatment, we concluded that LRRK2 phosphorylates Rab10 in the tested brain cells such as primary neurons, astrocytes and BV2 microglial cells.

Keywords

References

  1. Arranz AM, Delbroek L, Van Kolen K, Guimaraes MR, Mandemakers W, Daneels G, Matta S, Calafate S, Shaban H, Baatsen P, De Bock PJ, Gevaert K, Vanden Berghe P, Verstreken P, De Strooper B, Moechars D. LRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism. J Cell Sci. 2015. 128: 541-552. https://doi.org/10.1242/jcs.158196
  2. Atashrazm F, Hammond D, Perera G, Bolliger MF, Matar E, Halliday GM, Schule B, Lewis SJG, Nichols RJ, Dzamko N. LRRK2-mediated Rab10 phosphorylation in immune cells from Parkinson's disease patients. Mov Disord. 2019. 34: 406-415. https://doi.org/10.1002/mds.27601
  3. Belin AC, Westerlund M. Parkinson's disease: a genetic perspective. Febs J. 2008. 275: 1377-1383. https://doi.org/10.1111/j.1742-4658.2008.06301.x
  4. Christensen KV, Hentzer M, Oppermann FS, Elschenbroich S, Dossang P, Thirstrup K, Egebjerg J, Williamson DS, Smith GP. LRRK2 exonic variants associated with Parkinson's disease augment phosphorylation levels for LRRK2-Ser1292 and Rab10-Thr73. BioRxiv. 2018. doi:?https://doi.org/10.1101/447946
  5. Di Maio R, Hoffman EK, Rocha EM, Keeney MT, Sanders LH, De Miranda BR, Zharikov A, Van Laar A, Stepan AF, Lanz TA, Kofler JK, Burton EA, Alessi DR, Hastings TG, Greenamyre JT. LRRK2 activation in idiopathic Parkinson's disease. Sci Transl Med. 2018. 10: 451.
  6. Eguchi T, Kuwahara T, Sakurai M, Komori T, Fujimoto T, Ito G, Yoshimura SI, Harada A, Fukuda M, Koike M, Iwatsubo T. LRRK2 and its substrate Rab GTPases are sequentially targeted onto stressed lysosomes and maintain their homeostasis. Proc Natl Acad Sci U S A. 2018. 115: E9115-E9124. https://doi.org/10.1073/pnas.1812196115
  7. Fan Y, Howden AJM, Sarhan AR, Lis P, Ito G, Martinez TN, Brockmann K, Gasser T, Alessi DR, Sammler EM. Interrogating Parkinson's disease LRRK2 kinase pathway activity by assessing Rab10 phosphorylation in human neutrophils. Biochem J. 2018. 475: 23-44. https://doi.org/10.1042/BCJ20170803
  8. Fujimoto T, Kuwahara T, Eguchi T, Sakurai M, Komori T, Iwatsubo T. Parkinson's disease-associated mutant LRRK2 phosphorylates Rab7L1 and modifies trans-Golgi morphology. Biochem Biophys Res Commun. 2018. 495: 1708-1715. https://doi.org/10.1016/j.bbrc.2017.12.024
  9. Gurley C, Nichols J, Liu S, Phulwani NK, Esen N, Kielian T. Microglia and Astrocyte Activation by Toll-Like Receptor Ligands: Modulation by PPAR-gamma Agonists. PPAR Res. 2008. 2008: 453120. https://doi.org/10.1155/2008/453120
  10. Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson's disease. Parkinsonism Relat Disord. 2012. 18 Suppl 1: S210-S212. https://doi.org/10.1016/S1353-8020(11)70065-7
  11. Ho DH, Je AR, Lee H, Son I, Kweon HS, Kim HG, Seol W. LRRK2 Kinase Activity Induces Mitochondrial Fission in Microglia via Drp1 and Modulates Neuroinflammation. Exp Neurobiol. 2018. 27: 171-180. https://doi.org/10.5607/en.2018.27.3.171
  12. Ho DH, Kim H, Kim J, Sim H, Ahn H, Kim J, Seo H, Chung KC, Park BJ, Son I, Seol W. Leucine-Rich Repeat Kinase 2 (LRRK2) phosphorylates p53 and induces p21 (WAF1/CIP1) expression. Mol Brain. 2015. 8: 54. https://doi.org/10.1186/s13041-015-0145-7
  13. Jang J, Oh H, Nam D, Seol W, Seo MK, Park SW, Kim HG, Seo H, Son I, Ho DH, Increase in anti-apoptotic molecules, nucleolin, and heat shock protein 70, against upregulated LRRK2 kinase activity. Anim Cells Syst. (Seoul) 2018. 22: 273-280. https://doi.org/10.1080/19768354.2018.1518262
  14. Joe EH, Choi DJ, An J, Eun JH, Jou I, Park S. Astrocytes, Microglia, and Parkinson's Disease. Exp Neurobiol. 2018. 27: 77-87. https://doi.org/10.5607/en.2018.27.2.77
  15. Jose S, Tan SW, Tong CK, Vidyadaran S. Isolation and characterization of primary microglia from post-natal murine brain tissues: a comparison of two methods. Cell Biol Int. 2015. 39: 1355-1363. https://doi.org/10.1002/cbin.10516
  16. Kawakami F, Yabata T, Ohta E, Maekawa T, Shimada N, Suzuki M, Maruyama H, Ichikawa T, Obata F. LRRK2 phosphorylates tubulin-associated tau but not the free molecule: LRRK2-mediated regulation of the tau-tubulin association and neurite outgrowth. PLoS One. 2012. 7: e30834. https://doi.org/10.1371/journal.pone.0030834
  17. Kim B, Yang MS, Choi D, Kim JH, Kim HS, Seol W, Choi S, Jou I, Kim EY, Joe EH. Impaired inflammatory responses in murine Lrrk2-knockdown brain microglia. PLoS One. 2012. 7: e34693. https://doi.org/10.1371/journal.pone.0034693
  18. Koyama Y, Tsujikawa K, Matsuda T, Baba A. Intracerebroventricular administration of an endothelin ETB receptor agonist increases expressions of GDNF and BDNF in rat brain. Eur J Neurosci. 2003. 18: 887-894. https://doi.org/10.1046/j.1460-9568.2003.02797.x
  19. Lis P, Burel S, Steger M, Mann M, Brown F, Diez F, Tonelli F, Holton JL, Ho PW, Ho SL, Chou MY, Polinski NK, Martinez TN, Davies P, Alessi DR. Development of phospho-specific Rab protein antibodies to monitor in vivo activity of the LRRK2 Parkinson's disease kinase. Biochem J. 2018. 475: 1-22. https://doi.org/10.1042/BCJ20170802
  20. Liu Z, Bryant N, Kumaran R, Beilina A, Abeliovich A, Cookson MR, West AB. LRRK2 phosphorylates membrane-bound Rabs and is activated by GTP-bound Rab7L1 to promote recruitment to the trans-Golgi network. Hum Mol Genet. 2018. 27: 385-395. https://doi.org/10.1093/hmg/ddx410
  21. Lubbe S, Morris HR. Recent advances in Parkinson's disease genetics. J Neurol. 2014. 261: 259-266. https://doi.org/10.1007/s00415-013-7003-2
  22. Matta S, Van Kolen K, da Cunha R, van den Bogaart G, Mandemakers W, Miskiewicz K, De Bock PJ, Morais VA, Vilain S, Haddad D, Delbroek L, Swerts J, Chavez-Gutierrez L, Esposito G, Daneels G, Karran E, Holt M, Gevaert K, Moechars DW, De Strooper BD, Verstreken P. LRRK2 Controls an EndoA Phosphorylation Cycle in Synaptic Endocytosis. Neuron. 2012. 75: 1008-1021. https://doi.org/10.1016/j.neuron.2012.08.022
  23. Moehle MS, Webber PJ, Tse T, Sukar N, Standaert DG, DeSilva TM, Cowell RM, West AB. LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci. 2012. 32: 1602-1611. https://doi.org/10.1523/JNEUROSCI.5601-11.2012
  24. Monfrini E, Di Fonzo A. Leucine-Rich Repeat Kinase (LRRK2) Genetics and Parkinson's Disease. Adv Neurobiol. 2017. 14: 3-30. https://doi.org/10.1007/978-3-319-49969-7_1
  25. Parisiadou L, Xie C, Cho HJ, Lin X, Gu XL, Long CX, Lobbestael E, Baekelandt V, Taymans JM, Sun L, Cai H. Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci. 2009. 29: 13971-13980. https://doi.org/10.1523/JNEUROSCI.3799-09.2009
  26. Piccoli G, Condliffe SB, Bauer M, Giesert F, Boldt K, De Astis S, Meixner A, Sarioglu H, Vogt-Weisenhorn DM, Wurst W, Gloeckner CJ, Matteoli M, Sala C, Ueffing M. LRRK2 Controls Synaptic Vesicle Storage and Mobilization within the Recycling Pool. J Neurosci. 2011. 31: 2225-2237. https://doi.org/10.1523/JNEUROSCI.3730-10.2011
  27. Piccoli G, Onofri F, Cirnaru MD, Kaiser CJ, Jagtap P, Kastenmuller A, Pischedda F, Marte A, von Zweydorf F, Vogt A, Giesert F, Pan L, Antonucci F, Kiel C, Zhang M, Weinkauf S, Sattler M, Sala C, Matteoli M, Ueffing M, et al. Leucine-Rich Repeat Kinase 2 Binds to Neuronal Vesicles through Protein Interactions Mediated by Its C-Terminal WD40 Domain. Mol Cell Biol. 2014. 34: 2147-2161. https://doi.org/10.1128/MCB.00914-13
  28. Purlyte E, Dhekne HS, Sarhan AR, Gomez R, Lis P, Wightman M, Martinez TN, Tonelli F, Pfeffer SR, Alessi DR. Rab29 activation of the Parkinson's disease-associated LRRK2 kinase. Embo J. 2018. 37: 1-18. https://doi.org/10.15252/embj.201798099
  29. Russo I, Berti G, Plotegher N, Bernardo G, Filograna R, Bubacco L, Greggio E. Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-kappaB p50 signaling in cultured microglia cells. J Neuroinflammation. 2015. 12: 230. https://doi.org/10.1186/s12974-015-0449-7
  30. Seol W. Biochemical and molecular features of LRRK2 and its pathophysiological roles in Parkinson's disease. BMB Rep. 2010. 43: 233-244. https://doi.org/10.5483/BMBRep.2010.43.4.233
  31. Shin N, Jeong H, Kwon J, Heo HY, Kwon JJ, Yun HJ, Kim CH, Han BS, Tong Y, Shen J, Hatano T, Hattori N, Kim K-S, Chang S, Seol W. LRRK2 regulates synaptic vesicle endocytosis. Exp. Cell Res. 2008. 314: 2055-2065. https://doi.org/10.1016/j.yexcr.2008.02.015
  32. Soukup SF, Kuenen S, Vanhauwaert R, Manetsberger J, Hernandez-Diaz S, Swerts J, Schoovaerts N, Vilain S, Gounko NV, Vints K, Geens A, De Strooper B, Verstreken P. A LRRK2-Dependent EndophilinA Phosphoswitch Is Critical for Macroautophagy at Presynaptic Terminals. Neuron. 2016. 92: 829-844. https://doi.org/10.1016/j.neuron.2016.09.037
  33. Steger M, Diez F, Dhekne HS, Lis P, Nirujogi RS, Karayel O, Tonelli F, Martinez TN, Lorentzen E, Pfeffer SR, Alessi DR, et al. Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis. Elife. 2017. 6: e31012. https://doi.org/10.7554/eLife.31012
  34. Steger M, Tonelli F, Ito G, Davies P, Trost M, Vetter M, Wachter S, Lorentzen E, Duddy G, Wilson S, Baptista MA, Fiske BK, Fell MJ, Morrow JA, Reith AD, Alessi DR, Mann. M. Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. Elife. 2016. 5: e12813. https://doi.org/10.7554/eLife.12813
  35. Thirstrup K, Dachsel JC, Oppermann FS, Williamson DS, Smith GP, Fog K, Christensen KV. Selective LRRK2 kinase inhibition reduces phosphorylation of endogenous Rab10 and Rab12 in human peripheral mononuclear blood cells. Sci Rep. 2017. 7: 10300. https://doi.org/10.1038/s41598-017-10501-z
  36. Yun HJ, Kim H, Ga I, Oh H, Ho DH, Kim J, Seo H, Son I, Seol W. An early endosome regulator, Rab5b, is an LRRK2 kinase substrate. J Biochem. 2015. 157: 485-495. https://doi.org/10.1093/jb/mvv005
  37. Yun HJ, Park J, Ho DH, Kim H, Kim CH, Oh H, Ga I, Seo H, Chang S, Son I, Seol W. LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25. Exp Mol Med. 2013. 45, e36. https://doi.org/10.1038/emm.2013.68