• Title/Summary/Keyword: RF output power

Search Result 375, Processing Time 0.021 seconds

An Experimental Study for Optimal RF Output Power Estimation of Wireless Sensor Network (건물 용도별 무선계측 최적 전파강도 산정을 위한 실험적 연구)

  • Yee, Jurng-Jae;Choi, Seok-Yong;Cho, Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.462-467
    • /
    • 2009
  • Researches and developments on BEMS are performed world-widely through sustainable management in various conditions. However, there are many obstacles to adapt the system in existing buildings because it needs highly expensive equipments, which are designed for newly built buildings, to install. Therefore, there are numerous limits exist when applying the BEMS in established buildings. The purpose of this study estimates the optimization of RF output power in WSN(Wireless Sensor Networks), which is the essential technology to develop PEMS. The results of this study is as follows ; 1) Applying WSN technique in buildings was possible. 2) As RF output power increases, the number of relay node reduced, therefore, the WSN showed more stability. 3) When estimating optimal RF output power in school, it should be considered between the number of relay node and RF output power. 4) Considering battery consumption and possibility of reception, the best suited RF output power is -20dbm in apartment house.

A 900MHz CMOS RF Power Amplifier with Digitally Controllable Output Power (Digital 방식으로 출력 전력을 조절할 수 있는 900MHz CMOS RF 전력 증폭기)

  • 윤진한;박수양;손상희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.162-170
    • /
    • 2004
  • A 900MHz CMOS RF power amplifier with digitally controllable output power has been proposed and designed with 0.6${\mu}{\textrm}{m}$ standard CMOS technology. The designed power amplifier was composed of digitally controllable switch mode pre-amplifiers with an integrated 4nH spiral inductor load and class-C output stage. Especially, to compensate the 1ow Q of integrated spiral inductor, cascode amplifier with a Q-enhancement circuit is used. It has been shown that the proposed power control technique allows the output power to change from almost 3dBm to 13.5dBm. And it has a maximum PAE(Power Added Efficiency) of almost 55% at 900MHz operating frequency and 3V power supply voltage.

Online output power measurement of full-bridged MOS-FET RF power inverter operating at shortwave frequency

  • Suzuki, Taiju;Suyama, Tetsuji;Yamamoto, Tetsuya;Ikeda, Hiroaki;Yoshida, Hirofumi;Shinohara, Shigenobu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1920-1923
    • /
    • 1991
  • An online RF power measurement is needed for the full-bridged MOS-FET RF power inverter because the output current and/or voltage waveform is other than sinusoidal. In order to satisfy the requirement, the online measurement of the output power of this type of RF power inverter by the use of the PC-98 personal computer has been presented. The current and voltage waveforms are sensed by the digital oscilloscope probes so as to obtain the instantaeous power and they are entered into the PC98 personal computer so as to average the instantaneous powers. The RF power of up to 1 kw at 1 MHz measured for the power inverter at the output transformer. This method was confirmed to be applied to evaluate the load resistance change with temperature.

  • PDF

DC voltage control by drive signal pulse-width control of full-bridged inverter

  • Ishikawa, Junichi;Suzuki, Taiju;Ikeda, Hiroaki;Mizutani, Yoko;Yoshida, Hirofumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.255-258
    • /
    • 1996
  • This paper describes a DC voltage controller for the DC power supply which is constructed using the full-bridged MOS-FET DC-to-RF power inverter and rectifier. The full-bridged MOS-FET DC-to-RF inverter consisting of four MOSFET arrays and an output power transformer has a control function which is able to control the RF output power when the widths of the pulse voltages which are fed to four MOS-FET arrays of the fall-bridged inverter are changed using the pulse width control circuit. The power conversion efficiency of the full-bridged MOS-FET DC-to-RF power inverter was approximately 85 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The RF output voltage from the full-bridged MOS-FET DC-to-RF inverter is fed to the rectifier circuit through the output transformer. The rectifier circuit consists of GaAs schottky diodes and filters, each of which is made of a coil and capacitors. The power conversion efficiency of the rectifier circuit was over 80 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The output voltage of the rectifier circuit was changed from 34.7V to 37.6 V when the duty cycles of the pulse voltages were changed from 30 % to 50 %.

  • PDF

Measurement and Explanation of DC/RF Power Loci of an Active Patch Antenna

  • Mcewan, Neil J.;Ali, Nazar T.;Mezher, Kahtan A.;El-Khazmi, Elmahdi A.;Abd-Alhameed, Raed A.
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.6-12
    • /
    • 2011
  • A case study of an active transmitting patch antenna revealed a characteristic loop locus of DC power versus RF output power as drive frequency was varied, with an operational bandwidth substantially smaller than the impedance bandwidth of the radiator. An approximate simulation technique, based on separation of the output capacitance of the power transistor, yielded easily visualized plots of power dependence on internal load impedance, and a simple interpretation of the experimental results in terms of a near-resonance condition between the output capacitance and output packaging inductance.

Technical Trends in Next-Generation GaN RF Power Devices and Integrated Circuits (차세대 GaN RF 전력증폭 소자 및 집적회로 기술 동향)

  • Lee, S.H.;Lim, J.W.;Kang, D.M.;Baek, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.71-80
    • /
    • 2019
  • Gallium nitride (GaN) can be used in high-voltage, high-power-density/-power, and high-speed devices owing to its characteristics of wide bandgap, high carrier concentration, and high electron mobility/saturation velocity. In this study, we investigate the technology trends for X-/Ku-band GaN RF power devices and MMIC power amplifiers, focusing on gate-length scaling, channel structure, and power density for GaN RF power devices and output power level and output power density for GaN MMIC power amplifiers. Additionally, we review the technology trends in gallium arsenide (GaAs) RF power devices and MMIC power amplifiers and analyze the technology trends in RF power devices and MMIC power amplifiers based on both GaAs and GaN. Furthermore, we discuss the current direction of national research by examining the national and international technology trends with respect to X-/Ku-band power devices and MMIC power amplifiers.

Reliability Evaluation of RF Power Amplifier for Wireless Transmitter

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.154-157
    • /
    • 2008
  • A class-E RF(Radio Frequency) power amplifier for wireless application is designed using standard CMOS technology. To drive the class-E power amplifier, a class-F RF power amplifier is used and the reliability characteristics are studied with a class-E load network. The reliability characteristic is improved when a finite-DC feed inductor is used instead of an RF choke with the load. After one year of operating, when the load is an RF choke the output current and voltage of the power amplifier decrease about 17% compared to initial values. But when the load is a finite DC-feed inductor the output current and voltage decrease 9.7%. The S-parameter such as input reflection coefficient(S11) and the forward transmission scattering parameter(S21) is simulated with the stress time. In a finite DC-feed inductor the characteristics of S-parameter are changed slightly compared to an RF-choke inductor. From the simulation results, the class-E power amplifier with a finite DC-feed inductor shows superior reliability characteristics compared to power amplifier using an RF choke.

Reliability Characteristics of Class-E Power Amplifier using Class-F Driving Circuit (Class-F 구동회로를 사용하는 Class-E 전력 증폭기의 신뢰성)

  • Choi, Jin-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.6
    • /
    • pp.287-290
    • /
    • 2006
  • A class-E CMOS RF(Radio frequency) power amplifier with a 1.8 Volt power supply is designed using $0.25{\mu}m$ standard CMOS technology. To drive the class-E power amplifier, a Class-F RF power amplifier is used and the reliability characteristics are studied with a class-E load network. After one year of operating the power amplifier with an RF choke, the PAE(Power Added Efficiency) decreases from 60% to 47% and the output power decreases 29%. However, when a finite DC-feed inductor is used with the load, the PAE decreases from 60% to 53% and the output power decreases only 19%. The simulated results demonstrate that the class-E power amplifier with a finite DC-feed inductor exhibits superior reliability characteristics.

Technical Trends in GaN RF Electronic Device and Integrated Circuits for 5G Mobile Telecommunication (5G 이동통신을 위한 GaN RF 전자소자 및 집적회로 기술 동향)

  • Lee, J.M.;Min, B.G.;Chang, W.J.;Ji, H.G.;Cho, K.J.;Kang, D.M.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.53-64
    • /
    • 2021
  • As the 5G service market is expected to grow rapidly, the development of high-power, high-efficiency power amplifiers for the 5G communication infrastructure is indispensable. Gallium nitride (GaN) is attracting great interest as a key device in power devices and integrated circuits due to its wide bandgap, high carrier concentration, high electron mobility, and high-power saturation characteristics. In this study, we investigate the technology trends of Ka-band GaN radio frequency (RF) power devices and integrated circuits for operation in the millimeter-wave band of recent 5G mobile communication services. We review the characteristics of GaN RF high electron mobility transistor (HEMT) devices to implement power amplifiers operating at frequencies around 28 GHz and compare the technology of foreign companies with the device characteristics currently developed by the Electronics and Telecommunication Research Institute (ETRI). In addition, the characteristics of Ka-band GaN monolithic microwave integrated circuit (MMIC) power amplifiers manufactured using various GaN HEMT device technologies are reviewed by comparing characteristics such as frequency band, output power, and output power density of integrated circuits. In addition, by comparing the performance of the power amplifier developed by ETRI, the current status and future direction of domestic GaN power devices and integrated circuit technology will be discussed.

Reliability Characteristics of Class-E Power Amplifier with load Inductor (부하 인덕터에 따른 Class-E 전력 증폭기의 신뢰성 특성)

  • Choi Jin-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.2
    • /
    • pp.68-71
    • /
    • 2006
  • A class-E power amplifier is designed using 0.25$\mu$m standard CNMOS technology at 900MHz and the reliability characteristics are studied with the load network. The reliability characteristics is improved when a finite DC-feed inductor is used instead of RF choke. At the one you halt, the PAE(Power Added Efficiency) decreases from 58.0$\%$ to 35.7$\%$ and output power decreases from 120mW to 74mW in power amplifier using RF choke. However, when a finite DC-feed inductor is used with load the PAE decreases from 58.5$\%$ to 54.8$\%$ and output power decreases from 121mW to 112mW. From the simulated results, the class-E power amplifier with a finite DC-feed inductor shows superior reliability characteristics compared to rower amplifier using RF choke inductor.