• Title/Summary/Keyword: Queueing

Search Result 758, Processing Time 0.023 seconds

Multi-Scaling Models of TCP/IP and Sub-Frame VBR Video Traffic

  • Erramilli, Ashok;Narayan, Onuttom;Neidhardt, Arnold;Saniee, Iraj
    • Journal of Communications and Networks
    • /
    • v.3 no.4
    • /
    • pp.383-395
    • /
    • 2001
  • Recent measurement and simulation studies have revealed that wide area network traffic displays complex statistical characteristics-possibly multifractal scaling-on fine timescales, in addition to the well-known properly of self-similar scaling on coarser timescales. In this paper we investigate the performance and network engineering significance of these fine timescale features using measured TCP anti MPEG2 video traces, queueing simulations and analytical arguments. We demonstrate that the fine timescale features can affect performance substantially at low and intermediate utilizations, while the longer timescale self-similarity is important at intermediate and high utilizations. We relate the fine timescale structure in the measured TCP traces to flow controls, and show that UDP traffic-which is not flow controlled-lacks such fine timescale structure. Likewise we relate the fine timescale structure in video MPEG2 traces to sub-frame encoding. We show that it is possibly to construct a relatively parsimonious multi-fractal cascade model of fine timescale features that matches the queueing performance of both the TCP and video traces. We outline an analytical method ta estimate performance for traffic that is self-similar on coarse timescales and multi-fractal on fine timescales, and show that the engineering problem of setting safe operating points for planning or admission controls can be significantly influenced by fine timescale fluctuations in network traffic. The work reported here can be used to model the relevant characteristics of wide area traffic across a full range of engineering timescales, and can be the basis of more accurate network performance analysis and engineering.

  • PDF

Fuzzy M/M/l/K Queueing Network Model for Performance Evaluation of Network System (네트워크 시스템의 성능평가를 위한 퍼지 M/M/l/K 큐잉네트워크모델)

  • Choo, Bong-Jo;Jo, Jung-Bok;Woo, Chong-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.4
    • /
    • pp.1-9
    • /
    • 2001
  • In this paper, we propose Fuzzy M/M/1/K queueing network model which has derived by appling the fuzzy set theory to M/M/l/K queueing network model in which has single server and system capacity K. When the arriving rate of input job and the servicing rate of a server arc represented as the linguistic attributes, the system analysis can be performed by using this model. The major evaluation measures of system such as the average number of jobs existing in the system, the average number of jobs into system, and the average spending time of job in system etc. are derived for the evaluation of system. Computer simulation was performed for verifying the effectiveness of these result equations. In which the various fuzzy arriving rates and fuzzy servicing rates according to varying the system capacity K were given for the system evaluation. We verified that the results of simulation are in accord with the expected evaluations in the proposed fuzzy model.

  • PDF

An Optimal Pricing Strategy in An M/M/1 Queueing System Based on Customer's Sojourn Time-Dependent Reward Level (고객의 체류시간의존 보상에 기반한 M/M/1 대기행렬 시스템에서의 최적 가격책정 전략)

  • Lee, Doo Ho
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.146-153
    • /
    • 2016
  • This work studies the equilibrium behavior of customers and optimal pricing strategies of the sever in a continuous-time M/M/1 queueing system. In this work, we consider two pricing models. The first one is called the ex-ante payment scheme where the server charges a flat price for all services, and the second one is called the ex-post payment scheme where the server charges a price that is proportional to the time a customer spends in the system. In each pricing model, the departing customer receives the reward that is inversely proportional to his/her sojourn time. The server should make the optimal pricing decisions in order to maximize its expected profit per unit time in each payment scheme. This work also investigates customer's equilibrium joining or balking behaviors under server's optimal pricing strategies. Numerical experiments are conducted to help the server best select one between two pricing models.

A Call Admission Control Using Markovian Queueing Model for Multi-services Cognitive Radio Networks (멀티 서비스 무선 인지 망을 위한 마르코프 큐잉모델을 이용한 호 수락 제어)

  • Lee, Jin-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.347-352
    • /
    • 2014
  • In this paper, we propose a Markovian queueing model(M/M/1)-based call admission control to reduce forced terminating rate of non-real secondary user's call for Multi-services Cognitive Radio Networks. A existing control has a problem that the forced terminating rate increases because of adopting a policy of spectrum priority allocation to real calls. In our scheme the rate can be reduced as the call that has no useful spectrum waits in a queue until getting an available spectrum. Our scheme use a neural-net based prediction of primary user's reappearance. Through the simulation, we analysis the call forced terminating rate, access delay and spectrum utilization efficiency, and then show that our scheme can more reduce the forced terminating rate of the call, compared to that of the existing algorithm.

An Effective Cell Scheduling Algorithm for Input Queueing ATM Switch (입력단 큐잉 방식의 ATM 스위치를 위한 효율적 셀 중재 방식에 관한 연구)

  • 김용웅;원상연;박영근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.122-131
    • /
    • 2000
  • In this paper, we propose a cell scheduling algorithm for input queueing ATM switch. The input queueing architecture is attractive for building an ultra-high speed ATM (Asynchronous Transfer Mode) switch. We proposea WMUCS (Weighted Matrix Unit Cell Scheduler) based on the MUCS which resolves HOL blocking and outputport contention. The MUCS algorithm selects an optimal set of entries as winning cells from traffic matrix (weightmatrix). Our WMUCS differs from the MUCS in generating weight matrices. This change solves the starvationproblem and it reduces the cell loss variance. The performance of the proposed algorithm is evaluated by thesimulation program written in C++. The simulation results show that the maximum throughput, the average celldelay, and the cell loss rate are significantly improved. We can see that the performance of WMUCS is excellentand the cost-effective implementation of the ATM switch using proposed cell scheduling algorithm.

  • PDF

Analysis of Discrete-Time Geo/G/1 Queues under Workload Control and Multiple Vacations (일량제어정책과 복수휴가를 갖는 이산시간 Geo/G/1 대기행렬의 분석)

  • Lee, Se Won
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.2
    • /
    • pp.29-39
    • /
    • 2018
  • In this paper, we discuss a discrete-time queueing system with dyadic server control policy that combines workload control and multiple vacations. Customers arrive at the system with Bernoulli arrival process. If there is no customer to serve in the system, an idle single server spends a vacation of discrete random variable V and returns. The server repeats the vacation until the total service time of waiting customers exceeds the predetermined workload threshold D. In this paper, we derived the steady-state workload distribution of a discrete-time queueing system which is operating under a more realistic and flexible server control policy. Mean workload is also derived as a performance measure. The results are basis for the analysis of system performance measures such as queue lengths, waiting time, and sojourn time.

A Mathematical Model for Asymmetrical/Heterogeneous Traffic Management in TD-CDMA System (시분할-코드분할 다중 접속 시스템에서 비대칭/불균질 트래픽 처리에 대한 수학적 모델)

  • Shin Jung chae;Lee Yutae;Kim Jeong ho;Cho Ho shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.259-270
    • /
    • 2005
  • This paper proposes a mathematical model to analyze call-and packet-level performance of the TD-CDMA/TDD system which could serve a flexible radio resource management against multi-type heterogeneous and asymmetrical traffic conditions. On call-level analysis, the mathematical model based on queueing theory performs multi-dimensional operations using random vectors or matrices to consider multiple types of traffic and also deal with asymmetrical up- and down-direction transmissions separately. Employing the mathematical model, we obtain rail blocking probability for each type of traffic and also the optimum switching-point with the smallest call flocking probability. And on packet-level analysis, employing a non-prioritized queueing scheme between circuit and packet calls, we solve 2-dimensional random vector problem composed of the queue length for packets and the number of circuit calls being served. Finally, packet-level performance is analyzed in terms of the packet loss probability and the buffer size required under mixed-traffic conditions of multiple types of circuit and packet calls.

Application of Control Variable with Routing Probability to Queueing Network Simulation (대기행렬 네트워크 시뮬레이션에서 분지확률 통제변수의 응용)

  • Kwon, Chi-Myung;Lim, Sang-Gyu
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.71-78
    • /
    • 2012
  • This research discusses the application of the control variables to achieve a more precise estimation for the target response in queueing network simulation. The efficiency of control variable method in estimating the response depends upon how we choose a set of control variables strongly correlated with the response and how we construct a function of selected control variables. For a class of queuing network simulations, the random variables that drive the simulation are basically the service-time and routing probability random variables. Most of applications of control variable method focus on utilization of the service time random variables for constructing a controlled estimator. This research attempts to suggest a controlled estimator which uses these two kinds of random variables and explore the efficiency of these estimators in estimating the reponses for computer network system. Simulation experiments on this model show the promising results for application of routing probability control variables. We consider the applications of the routing probability control variables to various simulation models and combined control variables using information of service time and routing probability together in constructing a control variable as future researches.

Fuzzy BCMP Queueing Network Model for Performance Evaluation of Distributed Processing System (분산처리시스템의 성능평가를 위한 퍼지 BCMP 큐잉네트워크모델)

  • Chu, Bong-Jo;Jo, Jeong-Bok;U, Jong-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.1
    • /
    • pp.14-22
    • /
    • 2002
  • We propose the fuzzy BCMP queueing network model for the performance evaluation of distributed processing system with the ambiguous arrival rates of job, service requirements, and service rates of server by the network environments. This model is classified as the open and closed type whether or not the network accepts jobs from the system outside. We derived the measures for system performances such as the job average spending time, average job number in the system and server utilizations using fuzzy mean value analysis which can process the fuzzy factors for both types. Computer simulation was performed for verifying the effectiveness of derived equations of performance evaluation. The fuzzy BCMP queueing network model was evaluated according to the fuzzy arrival rates of job, the number of clients, and the fuzzy service requirements of job for each the open and closed type. The results were agreed with the predicted performance evaluations of the system.

Performance Evaluation of a Two-Product CONWIP System with Poisson Demand Processes (Poisson 수요과정을 갖는 두 품목 콘윕시스템의 성능평가)

  • Park, Chan-Woo;Kim, Su-Min;Bang, Woo-Hyung;Lee, Hyo-Seong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.3
    • /
    • pp.172-182
    • /
    • 2013
  • In this study we consider a flow line CONWIP system in which two types of product are produced. The processing times of each product type at each station follow an independent exponential distribution and the demands for the finished products of each type arrive according to a Poisson process. The demands that are not satisfied instantaneously are either backordered or lost according to the number of unsatisfied demands that exist at their arrival instants. For this system we develop an approximation method to obtain the performance measures such as steady state probabilities of the number of parts of each product type at each station, mean waiting times of backordered demands and the proportion of backordered demands. For the analysis of the proposed CONWIP system, we model the CONWIP system as a two class closed queueing network with a synchronization station and analyze the closed queueing network using a product-form approximation method for multiple classes developed by Baynat and Dallery. In the approximation method, each subsystem is analyzed using a matrix geometric method. Comparisons with simulation show that the approximation method provides fairly good results for all performance measures.