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Multi-Scaling Models of TCP/IP and Sub-Frame
VBR Video Traffic

Ashok Erramilli, Onuttom Narayan, Arnold Neidhardt, and Iraj Saniee

Abstract: Recent measurement and simulation studies have re-
vealed that wide area network traffic displays complex statistical
characteristics—possibly mulrifractal scaling—on fine timescales, in
addition to the well-known property of self-similar scaling on
coarser timescales. In this paper we investigate the performance
and network engineering significance of these fine timescale fea-
tures using measured TCP and MPEG?2 video traces, queueing sim-
ulations and analytical arguments. We demonstrate that the fine
timescale features can affect performance substantially at low and
intermediate utilizations, while the longer timescale self-similarity
is important at intermediate and high utilizations. We relate the
fine timescale structure in the measured TCP traces to flow con-
trols, and show that UDP traffic—which is not flow controlled-lacks
such fine timescale structure. Likewise we relate the fine timescale
structure in video MPEG2 traces to sub-frame encoding. We show
that it is possibly to construct a relatively parsimonious multi-
fractal cascade model of fine timescale features that matches
the queueing performance of both the TCP and video traces. We
outline an analytical method to estimate performance for traffic
that is self-similar on coarse timescales and multi-fractal on fine
timescales, and show that the engineering problem of setting safe
operating points for planning or admission controls can be signif-
icantly influenced by fine timescale fluctuations in network traffic.
The work reported here can be used to model the relevant char-
acteristics of wide area traffic across a full range of engineering
timescales, and can be the basis of more accurate network perfor-
mance analysis and engineering.

Index Terms: Self-similarity and long range dependence, perfor-
mance and queueing analysis, TCP, UDP, MPEG?2 traffic modeling,
multifractals.

1. INTRODUCTION

It is now generally accepted that appropriately aggregated
wide area network packet network traffic exhibits self-similar
scaling over a wide range of timescales [1]-[7]. More re-
cent measurement studies have indicated that beyond self-
similarity, wide area TCP traffic shows more complex sta-
tistical characteristics—perhaps multi-fractal scaling—on finer
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timescales. From the viewpoint of network engineering, such
observations of self-similar or multi-fractal scaling are of in-
terest only to the extent that these features can impact traffic
performance. The performance and traffic engineering implica-
tions of self-similarity have already been demonstrated (see for
example [8], [9]). The object of this paper is to examine the
performance and network engineering significance of the fine
timescale features that are “beyond self-similarity,” to gain an
understanding of situations when they are consequential, to ver-
ify multifractal models for these features in such situations, and
to develop analysis methods based on these descriptions.

A second objective of this paper is to investigate the applica-
tion of the same modeling methodology, based on multi-fractal
scaling, to model traffic features of VBR video traffic below a
frame level. Although there has been considerable research on
video traffic (for a representative, but far from exhaustive list
see [3], [10]-[12]), much of the prior literature (see [3], [11])
is concerned with modeling fluctuations in video traffic at and
above the frame level. However, as has been argued [10], per-
formance can be very often determined by fluctuations at the
cell level. One would thus expect characterizations at the slice
level to be more accurate than the frame level for many queueing
scenarios.

Fine timescale, or large frequency, features of a traffic stream
are typically lost when individual streams are aggregated in the
core of a network, where as has been shown, the long time cor-
relations and low frequencies dominate the overall performance.
However, at the edge of the network, where call admission con-
trol and conformance tests are typically performed, these fine
time-scale characteristics of the individual stream become rele-
vant, irrespective of the subsequent aggregation in the network
core.

Typically, fine timescale features in traffic are less robust
than coarse timescale fluctuations: They can be readily modi-
fied through buffering or shaping, and are more sensitive to flow
control parameters, content, coding scheme and coding param-
eters.” For this reason, our focus is on a structural methodology
that can capture the full range of fine timescale features observed
in network traffic: TCP flow control induced fluctuations below
the timescales of TCP segment round-trip times, and video sub-
frame characteristics that are determined by the coding schemes.
These are discussed next.

A. Beyond Self-similarity: Observed Fine Timescale Features

Given the demonstrated significance of long timescale cor-
relations on network performance, a self-similar traffic model,
Fractional Brownian Motion (FBM), has been proposed as a
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parsimonious and tractable model of packet traffic [13]. In this
model, the number of arrivals (e.g., packets, cells, bytes) in an
observation interval (0,¢) can be represented by a self-similar
fluctuation about its expectation:

A(t) = mt +VamZ(t), (1)

where A(t) denotes the number of arrivals up to time ¢, m is
the mean arrival rate, a is the peakedness parameter, and Z(t)
is a standard (mean zero, variance t2f) FBM. The fluctuations
observed over different timescales are self-similar in that Z(at)
is distributed as o Z(t), where H is the Hurst parameter char-
acterizing the self-similarity.

In networking terms, FBM is an accurate model of traffic ar-
rivals under the following conditions: 1) the traffic is aggregated
from a large number of low activity independent users,whose
peak rates are small relative to link capacity, so that the ii) the
timescales of interest (i.e., those that largely determine queue-
ing behavior) fall within the scaling region, and iii) the im-
pact of flow controls is not significant [4], [14]-[17]. The sim-
ple self-similar model can break down, for example, on finer
timescales over which protocol interactions (e.g., TCP) or en-
coding schemes (e.g., MPEG2) can determine packet or cell
transmission patterns.

For the case of TCP traffic, recent measurement studies [18],
[19] show that low-aggregate, broadband, wide area TCP/IP
traffic departs from FBM at time scales shorter than a lower
cutoff in two key respects. Firstly, the marginal distribution of
traffic counts is clearly non-Gaussian. Thus a purely second or-
der description—in terms of the mean and second moment—is
not complete (which is to say that two streams with the same
second order descriptions can give rise to very different queue-
ing behavior). Secondly, the scaling exponent of the variance
on timescales shorter than the lower cutoff is smaller than the
asymptotic exponent. As a refinement of these two deviations
from FBM, it is claimed [ 18], [19] that wide area TCP/IP traffic
below the lower cutoff exhibits multi-fractal scaling, with differ-
ent moments of the traffic process showing scaling characterized
by distinct exponents (in contrast, the scaling behavior in FBM
is characterized by only a single exponent, namely, the Hurst pa-
rameter). Analysis of detailed simulations of TCP also support
these observations [20], [21]. The lower cutoff is empirically
observed [18] to be of the order of the round-trip time of a TCP
segmem.

The case of VBR video traffic presents special challenges to
the modeler. For one, video traffic shows complex temporal
structure, with characteristic features on short (sub-frame), in-
termediate (1-100 frames) and long timescales (> 100 frames).
Much of the earlier work in this area has focused on the last two
regimes. Secondly, traffic characteristics can depend sensitively
on the coding scheme (e.g., H.261, MPEG) as well as specific
parameters employed in the coding (as with MPEG2). We use
MPEG?2 video as representative of VBR video traffic, and con-
sider just one aspect in its modeling: traffic fluctuations at the
slice, or the sub-frame level. Typically, traffic on the sub-frame
level is highly bursty and irregular, and as demonstrated in this
paper, these features can be adequately described using multi-
fractal scaling.

While it is inevitable that on the shortest timescales any
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packet traffic must be a non-Gaussian process, the important fea-
ture in wide area TCP/IP and VBR video traffic is that, unlike
earlier work on LAN traffic [8], this is found to have a significant
impact on network performance [22]. Thus a compact represen-
tation of short time scale features, either using multifractals or
alternative models [23], are useful in understanding the queue-
ing delays of WAN traffic.

B. Scope and Summary of Work

We investigate the fine timescale features in wide area TCP/IP
and MPEG?2 video traffic, using a series of simulation experi-
ments and an analysis of the problem of setting network oper-
ating points. We use the TCP packets from a one-hour trace
due to Digital Equipment Corporation, gathered at Digital’s pri-
mary Internet access point [24]. The analysis reported here
was conducted on multiple 6-minute samples of the I hour TCP
trace, but for clarity of presentation, we report on a single 6-
minute trace in this paper. For video traffic, the MPEG? trace
we study consists of 6 minutes of gymnastics at the 1996 At-
lanta Olympics containing 280,000 time slices of duration 4/3
ms each, with a minimum, mean and maximum of 15,815 and
5,514 bytes per time slice respectively [25]. Traces of varying
durations from other events at the Olympics were also investi-
gated, and show the same essential features. While our primary
focus in this paper are the traffic sensitive features within a sin-
gle stream, it is understood that network traffic consists of (per-
haps) limited aggregates of such individual streams.

We verify that both the TCP/IP and video traces show the
same fine timescale deviations from FBM as reported in [18],
[19] for TCP/IP traffic, on the basis of a multi-fractal scaling
analysis. There is a crossover from the fine timescale to coarser
timescale behavior at approximately the single frame level for
video traffic; for TCP, a similar crossover is observed in the
data at ~ 512 ms.! The impact on performance of the fine
timescale features is demonstrated in both cases by aggregating
the traffic over time to the level of the crossover time and inter-
polating down to the finer timescales in various ways. Using a
multi-fractal cascade to interpolate the fine timescale structure
appears to work adequately. We also perform shuffling experi-
ments, similar to those in [8] for LAN traffic, in order to show
that low-frequency features remain important.

Motivated by these results, we obtain analytical estimates for
the viable operating point for a network, under the assumption
that its traffic can be represented by an FBM process on long
timescales, crossing over below a lower cutoff to the FBM be-
havior to a purely multi-fractal cascade.” These estimates agree
with the simulation result that one has to operate at a reduced
utilization due to burstiness at fine timescale features in the traf-
fic, and show how this reduction depends on network parame-

LThis value, close to the granularity of timers used in many TCP implemen-
tations, may suggest that the crossover is an artifact. However, for the data ana-
lyzed here, th.e timestamps were specified to s and had an accuracy of ~ 1ms,
which eliminates this possibility. Moreover, such a crossover time has also been
observed in cther studies, with its value depending on the network environment:
for instance, :n [18], it is of the order of one second. 1n detailed TCP simulations
using fine grained timers, the crossover time has been observed to vary with the
round-trip time.

2For video traffic, there is also the intermediate scale, from the single frame
to the group of frames (GOF) level, to be taken care of.



ERRAMILLI er al.: MULTI-SCALING MODELS OF TCP I[P AND SUB-FRAME VBR VIDEO TRAFFIC 385

ters. Another important (but not surprising) finding is that multi-
fractal scaling exponents alone are not sufficient to describe the
traffic: one needs to specify the magnirude of the fluctuations in
(different moments of) the traffic. We fix these by assuming that
the behavior below the lower cutoff should satisfy the “boundary
conditions” imposed by the behavior above it.

C. Origins of Fine Timescale Traffic Features

As mentioned earlier, the fine timescale features arise due to
very different mechanisms in TCP and VBR video traffic. For
TCP, where the data is obtained from direct measurements on a
network, it has been argued [18] that the fine timescale behayv-
ior is due to the manner in which TCP regulates the load of-
fered by each individual source to the network. The fact that the
transition between the fine and coarse time behavior occurs at a
timescale of the order of the round-trip time of a TCP segment
lends support to this scenario. As additional evidence, we shall
show later in this paper that when TCP flow controls are not
present (as is the case with UDP transport), WAN traffic reverts
to simple FBM behavior. On the other hand, for MPEG?2 video
the fine timescale structure exists in the manner in which frames
are encoded, and arises independent of any network interactions.
A common descriptive framework for these two very different
mechanisms might appear unlikely. However, in a queueing
context, both these mechanisms generate a highly irregular dis-
tribution of packet/ cell/ byte counts over a time interval, and
as we demonstrate in this paper, multi-fractal cascades mimic
such irregular distributions sufficiently well for estimating per-
formance.

There is however one important difference in the way these
models should be interpreted for TCP and VBR video traffic. It
should be stressed that this paper is primarily concerned with
“open loop” characterizations of TCP traffic (such as self simi-
lar or multi-fractal descriptions), in that it considers the effect of
observed characteristics on network congestion, but does not ex-
plicitly address the effects of network congestion on the offered
traffic. Indisputably, a closed loop model that captures these
interactions is necessary for predictive purposes. The multi-
fractal cascades studied here are an important intermediate step
to achieving this goal because to some extent they mimic the
effects of TCP flow control. Thus the open loop characteriza-
tions studied here should be viewed as a necessary intermediate
step to achieving the long term objectives of a phenomenologi-
cal model that completely captures the interactions between net-
work state and traffic flows. Of course, this is not an issue for
real-time VBR video traffic.

D. Outline

The rest of this paper is organized as follows: Section Il
provides a short background on mono-fractal and multi-fractal
scaling. Section III characterizes the data, showing a transition
point between fine and coarse time scale behavior in the case
of TCP and MPEG?2 traffic, with the fine time scale fluctuations
described reasonably well as a multi-fractal cascade. Section
IV describes experiments, in which the traffic traces are aggre-
gated to this transition point, and then interpolated down to fine
timescales in a variety of ways, with the simulated performance

compared to that of the original in each case. Section V, obtains
analytical performance estimates for a simple model which is
multi-fractal on fine timescales and FBM on coarser timescales.
Finally, Section VI summarizes our conclusions with sugges-
tions for further work.

II. MULTI-FRACTAL SCALING

Since the main focus of this paper is to investigate the use-
fulness and implications of a multi-fractal description of traffic,
we summarize some of the basic concepts associated with multi-
fractals. Consider a traffic arrival process A(t), defined as the
total traffic that arrives in the interval {0, ¢). The associated in-
crement process X a (4), is defined by

Xa(i) = AGA) — A(G = 1)A). @)

The basic scaling hypothesis is that the moments of the incre-
ment process behave as:

> Xa(@)' ~C@A 7D for A= 0. 3)
T
In practice, the scaling hypothesis can be said to be reasonable
if the above behavior is satisfied over a range of timescales (for
the processes considered in this paper, these would apply to the
fine timescales). In general the structure function 7(q) defined
above — if it exists — will be a decreasing and nonlinear function
of ¢. Notice that 7(¢ = 0) must be equal to unity. When 7(q)
is linear in ¢, the scaling behavior is said to be mono-fractal,
and a single scaling exponent completely determines the scaling
behavior of all the moments of the traffic arrival process.
Multi-fractal scaling can also be described in terms of an -
spectrum f(«) if certain regularity conditions are satisfied, in
which case f(a) is defined by

Fla) = inf logq + 7(q)]

“)

with ¢ ranging over (—o0, 00) in the infimum. Under the regu-
larity conditions, the a-spectrum can be interpreted as the Haus-
dorff dimension of the set of points on the time axis with the
same local exponent c. If the regularity conditions are not satis-
fied, then at least three separate a-spectra can be defined [26].

When the scaling is mono-fractal, so that 7(g) is linear in ¢
(and 7(0) = 1), it is easy to see that f(«) has a value of unity at
a single point, and —oc for all other . That is to say, the same
exponent o describes the scaling behavior of the traffic arrival
process for all time £. In practical terms, multi-fractal scaling is
indicated by the presence of a broad a-spectrum.

One of the standard techniques to generate multi-fractal scal-
ing on finer timescales is the cascade construction. In the semi-
random version of this approach, a coarse timescale count over
an interval is distributed over finer timescales by assigning a
fraction p to one half of the interval and the remainder to the
other half. The choice of which of the two intervals to assign the
fraction p is done randomly. The distribution process is repeated
for a number of stages, and the result is marked by extreme ir-
regularity over a range of fine timescales. There are numerous
variations in the cascade construction [18]. For instance, the
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Fig. 1. Log-log plot for TCP traffic of various moments of the aggre-

gated increment process, >, X4 (¢)?, as a function of the size of the
aggregation interval A. Natural logarithms have been used. X, is
measured as a fraction of the total byte count in the entire trace, so
that the logarithms of all the moments approach zero at the right end
of the plot. A is measured in ms.

construction can also be strictly deterministic (i.e., the traffic is
distributed in the fixed ratio p : 1 — p at every stage).

III. SCALING PROPERTIES OF DATA

Fig. 1 shows a log-log plot of the various moments of the TCP
data. The moments of the increment process are plotted as a
function of the size of the aggregation interval A, in accordance
with Eq. (3).

There is a visible change in the behavior of all the different
moments at A ~ 512 ms, with the slopes of the curves changing
at around this point. Below 512 ms, one can fit the different mo-
ments in Fig. | to straight lines of different slopes. At timescales
coarser than 512 ms, the traffic is approximately FBM. This is
shown in Fig. 2 and Fig. 3, where beyond 512 ms the traffic
is approximately Gaussian with self-similar fluctuations. It ap-
pears that the scaling in the variance assumes its asymptotic be-
havior before the marginal distribution of counts “looks” fully
Gaussian.

For a pure FBM process, the traffic would have been self-
similar (and Gaussian) on all timescales. Conversely, for a pure
multifractal, the traffic would have looked self-similar but non-
Gaussian on all timescales. As Figs. 1-3 demonstrate, neither
of these descriptions is satisfactory. There are two separate
regimes, separated by A ~ 512 ms. Our strategy is to model the
traffic as FBM on coarse timescales, and interpolate down to fine
timescales using a multifractal description. The linearity of the
plots in Fig. 1 in the fine timescale regime conforms to Eq. (3).
The extent of this regime is approximately the same as has been
observed with other traffic measurements in [18]. The slopes in
the fine timescale regime, which define 7(q), are plotted against
g in Fig. 4, and show clear nonlinearity, invalidating a mono-
fractal description in this regime. By comparison, the familiar
FBM arrival process can be said to exhibit mono-fractal scaling,
when the fluctuations about the mean arrival rate (instead of the
arrival rate itself) are considered: 7(g) (for non-negative even ¢)
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Fig. 2. Log-log plot for TCP traffic of the variance in the byte counts per
time intarval, as a function of the size of the time interval. Natural
logarithms have been used. The straight line above approximately
512 ms corresponds to the low frequency FBM behavior of the traffic
fluctuations.
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Fig. 3. Marginals of the TCP traffic aggregated to 512 ms, showing
roughly Gaussian behavior.

is equal to 1 — gH, where H is the Hurst parameter characteriz-
ing the FBM.

Note that there is a slight difference in perspective be-
tween the multi-fractal approach at fine timescales, which di-
rectly models the traffic rate, and the FBM approach at coarse
timescales. which models the fluctuations from the mean in the
traffic rate. For all traffic, at very long timescales A, X (i)
will have a distribution sharply peaked around its mean. Corre-
spondingly, 3, X2 (i) scales as AY~! in this regime. Despite
the trivial behavior of the moments of the traffic, the fluctuations
still show long-range correlations. This, however, has been well
studied, and is not relevant for the fine timescale structure which
is the focus of this paper.

Fig. 4 also shows the structure function 7(¢q) for a semi-
random cascade (defined in the previous section) on fine
timescales, with the parameter p chosen to match the 7(g) ob-
tained for the data most closely. This cascade construction is
used in the next section where the queueing behavior for TCP
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Fig. 4. Plot of the scaling function 7(g), defined in Eq. (3), for various
values of the moment q. Here 7(gq) is obtained from the part of Fig. 1
below 512 ms. The curve DEC TCP is for the original measured
TCP data, while the curve mfc is for a semi-random cascade with
p = 0.65, chosen to visually match the DEC TCP curve as closely as
possible. The straight line 1 — ¢ is drawn to show the curvature of the

7(g) curve.
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Fig. 5. Log-log plot for MPEG2 video traffic of various moments of the
aggregated increment process 3, X4 (3) as a function of the aggre-
gation interval A. Natural logarithms have been used. X is mea-
sured as a fraction of the total byte count in the entire trace. A is
measured in units of the time interval between video slices, 1/750 s.

traffic is analyzed.

We now perform a similar analysis for the MPEG2 video data.
Fig. 5 is a log-log plot of the different moments. There is a tran-
sition from a short time regime at approximately 40 ms (or 30
slices, which corresponds to ~ 3.5 in the logarithmic time axis
in Fig. 5). Interestingly, this is the time duration of a frame, sug-
gesting that the fine timescale behavior is characteristic of how
MPEG? distributes data between slices within a single frame.?
In the fine timescale regime, the curves in the log-log plot of
Fig. 5 are all linear, although admittedly over a not very large
range of A, showing that Eq. (3) holds in this regime.

3The same threshold value of 40 ms was observed in several MPEG2 traces
that are characterized by a frame rate of 25 f/s, showing the connection between
the observed fine timescale regime and sub-frame characteristics.
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Fig. 7. Marginals of the video traffic aggregated to 40 ms, showing that
clear non-Gaussian behavior exists even at this level. The unnormal-
ized probabilities are plotted, with bin sizes of 1000 bytes. Higher
levels of aggregation eventually yield Gaussian marginals.

As mentioned in the previous section, for video traffic the fine
and coarse time regimes are separated by an intermediate time
regime, extending roughly from the single frame to the GOF
level. Since this is not very clear in Fig. 5, in Fig. 6 we show
a variance-time plot for the video traffic. The variance in the
byte counts per time interval, as a function of the size of the
time interval, is shown. The fine timescale regime, which is
the focus of this paper, is seen in this figure. Also seen is a
long time regime, where one obtains the long range dependence
that seems ubiquitous for packet traffic (with a Hurst parameter
H slightly greater than 0.6.) An intermediate regime separating
these two is also clearly visible. The approximately flat nature of
the variance here implies anticorrelations between the different
frames at this level. This is known to be the case with MPEG2:
I frames, containing all the information in a frame, occur at reg-
ular intervals, separated by the much more numerous P and B
frames, which are more compactly coded and therefore shorter.
One can also plot the marginals of the video traffic aggregated
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video trace (MPEG2). Also shown (mfc) is 7(g) with p = 0.6, chosen
to visually match the MPEG2 curve most closely. Linear structure
functions for FBM with H = 1.0 (fom 1.0) and H = 0.5 (fom 0.5) are
also shown.

to 40 ms (the edge of the fine timescale regime). This is shown
in Fig. 7. Unlike Fig. 3, we see that the marginals at the edge
of the fine timescale regime are still far from being Gaussian.
It is only upon aggregation to the GOF level that approximately
Gaussian marginals are obtained.

The description that we use for video traffic is therefore
slightly different from TCP/IP traffic: a long time FBM regime
above the GOF level, an intermediate time regime from the sin-
gle frame to the GOF level, and a short time sub-frame regime.
We do not attempt to model the first two regimes in this paper,
but instead take the byte count at the frame level from measure-
ments. We seek to model the third regime by interpolating down
from the frame level with a multifractal description.

Fig. 8 is a plot of the structure function 7(q) as a function of ¢,
obtained from the slopes in the fine timescale regime of the plots
in Fig. 5. As was the case with the TCP data, the curve for 7(q)
shows nonlinearity. Fig. 8 also shows the structure function for
a multifractal cascade chosen to match 7(q) for the video data
most closely. This is used in the next section of the paper; a
deterministic cascade is used for the video traffic, though the
semi-random construction is perhaps equally applicable.*

We have seen that both WAN TCP and MPEG2 video traffic
have complex structure at fine timescales that goes beyond the
FBM paradigm. For TCP traffic, the fine timescale structure is
believed to be imposed on the input traffic by TCP flow con-
trols. This is indirectly supported by the observation [18] that
this fine timescale structure extends up to a timescale of the or-
der of the network round trip time. Ideally, one would like to
construct a faithful representation of TCP operating on a vari-
ety of model networks to demonstrate that feedback causes fine
timescale structure. Here we take the simpler approach of re-
peating the analysis for TCP traffic on UDP traffic measured on
the same network.

UDP traffic from the same DEC network [24] was analyzed

4 A deterministic cascade is used since the fine timescale structure for video
comes from encoding rather than (random) network feedback.
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traffic, showing linear behavior.

for fine timescale structure. Fig. 9 shows that even at the 30ms
level the marginals of the traffic can be reasonably modeled by
a Gaussian distribution, in contrast to TCP. As a further check
for non-trivial structure, moments of the UDP traffic distribu-
tion were calculated over timescales from 1 ms to ~ 1 minute,
and 7(g) computed as a function of ¢ from these. As shown
in Fig. 10, 7(q) is a linear function of ¢. Thus for UDP traffic,
without any flow control feedback, the input traffic is adequately
described by FBM, as was seen earlier for LAN traffic. Fine
timescale structure is therefore not caused by differences in of-
fered traffic input for LANs and WANS, but rather by how TCP
flow controls regulate the offered traffic. It is important to ap-
preciate that the mere existence of TCP is not enough to gener-
ate significant fine timescale structure; network parameters can
mask this aspect of TCP flow controls. For instance, the earlier
LAN data also consisted of TCP traffic, but the round trip time
was not much greater than the packet transmission time, thus
eliminating the short-time regime.

A cascade construction can mimic the effects of flow controls
observed in wide area TCP traffic over fine timescales in the
following sense. In the absence of flow controls, traffic sources
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Fig. 11. The average queue length in bytes as a function of utilization
for the measured DEC trace (DEC TCP) and various modifications
thereof. The modifications considered are a smoothed version with
all fluctuations below 512 ms removed (Uniform), a worst-case ver-
sion where traffic is lumped at the beginning of each 512 ms interval
(Aggregate), and Poisson (Poisson) and multifractal cascade (mfc)
interpolations.

(e.g., those using UDP transport) transmit at their peak rates for
as long as there is traffic to send. Such sources can therefore be
modeled by ON/OFF sources which transmit at a peak rate in
their ON (or burst) state. In contrast, a source using TCP trans-
port will show more complex ON/OFF patterns within a burst.
Thus single or limited aggregates of TCP sources will show
highly irregular traffic distributions on fine timescales, and these
are the features described by multi-scaling and multi-fractal cas-
cades. Such irregular distributions also occur in video traffic, but
due to MPEG?2 coding rather than network flow controls.

IV. QUEUEING BEHAVIOR

We now turn to the queueing behavior of the measured traf-
fic, and that of its variants discussed in the Introduction. The
experiments described here are essentially open loop, and seek
to compare the performance impacts of multi-scaling, vs asymp-
totic features observed in the traffic traces under a common sce-
nario. We use the average queue length in bytes as a represen-
tative performance indicator because of its robustness, but the
conclusions stated here also apply to tail probabilities (as indi-
cated at the end of this section).

Fig. 11 shows a plot of average queue length in bytes vs.
utilization for DEC TCP trace, obtained by running the trace
through a simulated queue with capacity adjusted so that uti-
lizations are varied from 10%—-60%. The average queue lengths
increase sharply above 55%, but it is interesting to note that the
queueing backlogs are observed at utilizations as low as 20%.°
In most standard queueing models (with the exception of batch
arrival models), queueing backlogs are negligible at such low
utilizations.

In order to determine the role of fine timescale features in
the traffic, the trace is aggregated to the level of 512 ms (equal
to the rough lower cutoff to the FBM regime obtained in the

5ncreasing the utilization beyond 60% continues the trend seen in the figure.

previous section), and the total byte count in any 512 ms inter-
val is distributed uniformly over the interval. The result of this
is the second curve in Fig. 11, and is seen to be far too opti-
mistic. Fig. 11 also shows the queueing performance obtained
with a modified trace in which a worst-case scenario is used to
deal with the fine timescale features in the traffic. This is done
by calculating the maximum per-millisecond rate in the traffic
trace, aggregating the traffic over intervals of 512 ms, and as-
signing all the traffic in each 512 ms interval to the beginning of
the interval at this maximum rate. This was suggested as a very
conservative estimate in [12]. As can be seen from the figure,
this approximation, while duly serving as an upper bound for the
average queue length, is a gross overestimate. Thus while high
frequency features are important in determining performance at
low utilizations, it is worth trying to find better approximations
than this worst-case estimate.

If fine timescale features had not been important, the differ-
ence between the upper and lower bound curves in Fig. 11 would
have been insignificant. Thus while it is a priori clear that these
curves are bounds, the fact that they do so poorly shows that fine
timescale features cannot be ignored. (In fact, both of these ap-
proximations have been used extensively in the literature.) To
see whether a simple interpolation scheme would adequately
take care of fine timescale features, obviating the use of mul-
tifractals, Fig. 11 also shows the average queue length with the
packets in each 512 ms interval distributed assuming Poisson
arrivals; this is seen to be almost indistinguishable from the uni-
form distribution curve, demonstrating that much higher vari-
ability on fine timescales is needed.

We next consider a multi-fractal interpolation method to gen-
erate variability and non-Gaussian features on fine timescales.
As mentioned in Section II, there are several variations in multi-
fractal construction methods. For the TCP traffic, we use the
semi-random multi-fractal cascade (SRMC). This has the ad-
vantage of simplicity, in that only the single parameter p needs
to be specified. The parameter p was chosen so as to match the
scaling function 7(¢) (defined in Eq. (3)) obtained from Fig. 4
most closely. Fig. 4 (graphs labeled DEC TCP and mfc) shows
the result for p = 0.65, which is the value we use. The aver-
age queue length obtained by simulating the trace generated by
this SRMC interpolation is the fourth curve shown in Fig. 11. As
can be seen, the trace closely matches the characteristic obtained
with the original trace, indicating that it captures the essential
fine timescale features: a variability greater than that predicted
by FBM, coupled with distinctly non—Gaussian marginals®. The
use of the cascade construction offers a parsimonious descrip-
tion of multi-fractal scaling, which is otherwise highly parame-
terized. While it is certainly possible to use more complicated
multi-fractal interpolations - and matching the observed local
and global scaling behavior in traces does require additional
complexity in the construction [18] - the close match seen in
Fig. 11 suggests that a simple construction may be adequate for
estimating (first order) performance. Note that the multi-fractal
interpolation procedure is versatile enough to capture the full
regime of possibilities considered in Fig. 11, with p = 0.5 cor-
responding to the uniform distribution, and p = 1 resulting in

6The high variability and non-Gaussian marginals obtained with the SRMC
construction can be verified directly
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Fig. 12. The average queue length in bytes as a function of utilization
for the measured video traffic (MPEG2), and various modifications
thereof: i) a uniform interpolation (Uniform) of the aggregate traffic
on timescales shorter than 40 ms ii) all the traffic in any 40 ms in-
terval lumped at the beginning of the interval (Aggregate} iii) an fom
(fbm) interpolation below 40 ms and iv) a deterministic multifractal
cascade (mfc) interpolation below 40 ms, with p = 0.60.

the batch construction.

Further, note that there is no contradiction in the fact that fine
timescale structures which arise from flow control actions are
most consequential at low utilizations. There is a misconcep-
tion that flow controls are invoked or have impacts only under
congestion at high utilizations. What causes the irregular distri-
bution of packets over a round trip time is that the traffic source
has to wait for acks; a high capacity TCP source will transmit a
batch of packets (whose distribution is determined by the TCP
window dynamics) and then wait for the rest of the round trip
time for the acks to be returned. The “batchiness” arising from
the TCP windowing contributes to significant queueing delays
even at the lowest utilizations. In contrast, a UDP source will
continue to transmit packets at its peak rate as long as there is
data to transmit.

Similar experiments are performed for the MPEG2 video
data. Fig. 12 shows a plot of average queue length in bytes
vs. utilization for measured video traffic, obtained by running
the trace through a simulated queue with capacity adjusted so
that utilizations are varied from 10%-80%. Given that simula-
tions are being done for a single video stream, a corresponding
ATM networking scenario is: the VBR video stream is assigned
to a single VC, and the capacity of the link corresponds to the
bandwidth allocated to this VC in a per-VC queueing discipline.
In most ATM switches, unallocated or unused capacity can also
be used to serve this VC, so that the queueing backlogs stud-
ied here are upper bounds of the actual backlogs observed in a
per-VC queueing system. The single stream simulation is also
relevant for determining effective bandwidths, and for setting
policing and shaping parameters. In this paper, the value of the
single stream simulation is in identifying the statistical features
of the traffic that determine performance. The average queue
lengths increase sharply above 70%, and are significant even at
the 50-60% utilization level. Interpreted as a per-VC backlog,
average queues of the order of several kB are significant.

Interpolation schemes similar to those used for the TCP traffic
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Fig. 13. The average queue length in bytes as a function of utilization
for two superimposed MPEG2 streams, and various modifications
thereof: i} a uniform interpolation (Uniform) of the aggregate traffic
on timascales shorter than 40 ms ii) all the traffic in any 40 ms in-
terval lumped at the beginning of the interval (Aggregate) iii) an fom
(fom) interpolation below 40 ms and iv) a deterministic multifractal
cascade (mfc) interpolation below 40 ms, with p = 0.60.

in Fig. 11 are also tried for the video traffic. The trace is aggre-
cated to the frame level, and the bytes in each frame are either
distributed uniformly between the slices in the frame, or all as-
signed to the beginning of the frame. Both these interpolation
schemes are used extensively in performance studies based on
frame level measurements. The results of these are also shown
in Fig. 12.

As was seen for the TCP data, the two interpolation schemes
yield lower and upper bounds to the actual delay curve, but are
poor estimates. To show that slightly more complicated inter-
polation schemes—without multifractals—that would be between
these two bounds are not adequate, here we show the results for
an FBM :nterpolation; this is not much better than the lower
bound. Finally, the result of a cascade interpolation for the
MPEG?2 video traffic is shown in Fig. 12, except that as men-
tioned in the previous section, a deterministic cascade is used.
The corresponding 7(g} curve is shown in Fig. 8. It can be seen
that, as in the case of TCP traffic, the delay curve generated with
the cascade interpolation agrees quite well with that obtained
with the original data.

We recall at this stage that the video traffic data has an inter-
mediate time regime beyond the fine timescale regime with com-
plex cross—frame correlations. However, since the interpolation
schemes ciscussed here work with frame—level aggregates, they
preserve all the correlations or anticorrelations present at higher
timescales without explicitly modeling them. A more ambi-
tious approach might be to work with traffic aggregated to the
group of frames (GOF) level (or to start with pure FBM traffic at
this level, generated synthetically), interpolate to the frame level
keeping in mind the manner in which MPEG?2 distributes the dif-
ferent frarnes, and then proceed to a sub-frame level using mul-
tifractal (or other) approaches. (One might even consider doing
the sub-frame interpolation differently for the different types of
frames, although such an approach, if not strongly constrained
by the details of MPEG?2, can easily end up with too many free
parameters to be of practical use.) We leave this for future work.
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Fig. 14. The average queue length in bytes as a function of utiliza-
tion for the DEC TCP trace with 512 ms intervals shuffled (Shuffle),
thereby destroying all long time correlations, and for the measured
DEC trace (DEC TCP). The uniform interpolation curve from Fig. 11
(Uniform) and a shuffled cascade trace (mfc shuffle) are also shown.

For TCP traffic, this is not an issue, because the fine timescale
regime connects directly to a long time Gaussian regime. A rea-
sonable model would thus seem to consist of FBM on coarse
timescales, matched to a fine timescale SRMC interpolation.

However, to see that the multi-scaling method is not sensi-
tively dependent on byte variations due to a single MPEG?2 trace,
we combined two MPEG2 traces and did a similar analysis. The
the average queue length is shown in Fig. 13. We observe the
same behavior as that of a single MPEG?2 trace, with the multi-
fractal scaling showing the best fit.

So far we have focussed on the fine timescale features in
the traffic. We now turn to the complementary question, of
whether the long timescale correlations have any bearing on per-
formance. We report results for TCP traffic only. We divide the
DEC TCP trace into blocks of 512 ms and shuffle the blocks,
while preserving the byte counts in each of the | ms subinter-
vals of each block. This has the effect of destroying long time
correlations and preserving fine timescale correlations. The av-
erage queue lengths for this shuffled trace and for the original
DEC TCP trace are shown in Fig. 14. Note the significant devi-
ation from the original queue length curve at utilizations above
0.5; this discrepancy becomes very large for utilizations above
0.65. Fig. 14 also reproduces the performance curve for uniform
interpolation below 512 ms (from Fig. 11), demonstrating that
long time and fine timescale correlations in the traffic affect per-
formance in complementary regimes of heavy and light loading
respectively. At intermediate utilization levels, where it would
be reasonable to operate the network, both short and long time
correlations are important. Finally, Fig. 14 shows the average
queue length for a trace with blocks shuffled, and with the bytes
within each block distributed according to a cascade. This curve
is very close to the first curve in Fig. 14, emphasizing that the
cascade construction is adequate for fine timescale features.

We conclude this section by briefly looking at the tail proba-
bility instead of the average for the queue length. This is more
relevant to the analysis in the following section of this paper.
Fig. 15 shows the maximum queue length achieved over a 5
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Fig. 15. The maximum queue length in bytes over a 5 minute time
interval for TCP traffic, as a function of utilization. Curves corre-
sponding to original traffic trace (DEC TCP), the trace with 512 ms
blocks shuffled (Shuffle), and uniform (Uniform) and cascade (mfc)
interpolations below 512 ms are shown.

minute interval, for the original TCP traffic trace and some of
its modifications considered so far. It can be seen that the con-
clusions we have drawn from the average queue lengths about
the regimes of importance of short and long time features re-
main valid.

V. PERFORMANCE ANALYSIS AND ENGINEERING

In the previous sections we observed the significant perfor-
mance impacts of the fine timescale fluctuations in the TCP
and video trace, and the fact these could be modeled reason-
ably by a multi-fractal cascade. We now examine whether such
a description is analytically tractable to the extent that one can
estimate relevant engineering metrics (such as queueing back-
logs, safe operating points). In the remainder of this paper we
show how one can analyze performance with a semi-random
multifractal cascade description, and further consider its con-
sequences for admissions control and capacity planning, using
large-deviations theory.

Using standard large-deviations arguments [27], the loss
probability at a link of capacity C' and buffer size 3 that is driven
by an arrival process A(t) can be estimated by

P(Q>B) ~ sup P(A(t) > Ct+ B)
£>0
~ sup exp[—A*(Ct + B,t)] )
>0

where A* is the Legendre transform of the function A, defined
as A*(z,t) = sup, (sz — A(s, 1)), and A is the logarithm of the
moment-generating function of A(t). If A(¢) is comprised of
n independent streams A;(¢), the function A can be expressed
as [28]

A(s,t) = nAj(s,t) =nlog [E(exp(sA[(t)))]

nlog {Z s'B(AT(1)/q'] - (6)

q=0



With a target loss probability of ¢ = exp[—A], using Eq. (5)
as an estimate of the loss probability yields the condition A <
infyso sup,[s(Ct + B) — nA;(s,t)]. This can be inverted, to
yield the maximum number NV of sources that can be supported
on the communication link:

)

Note that while estimates of performance measures such as loss
rates can be far from their actual values using large-deviations-
based methods, the corresponding engineering recommenda-
tions are typically more accurate. This is because near the oper-
ating point, small changes in traffic levels can have a large effect
on the relevant performance measure; conversely, large discrep-
ancies in performance estimates have nevertheless a small effect
on the operating points.

Eq. (6) indicates analytically how multi-scaling is related to
performance. First, the equations above show how performance
is related to the moments of the arrival process at all timescales,
especially at the performance-relevant timescale, which corre-
sponds to the value of ¢ that realizes the infimum in Eq. (7).
Meanwhile, the basic multi-scaling relation Eq. (3) shows that
on fine timescales, moments of arrivals over a timescale depend
on the timescale through simple power laws. For a single traf-
fic stream, these sums >, Xa(4)? are basically proportional
to E(AY(A))/A. These power laws allow one to express the
time dependence of each of the various moments in the sum
of Eq. (6) in terms of a scaling exponent and a constant pre-
factor or intercept, rather than explicitly specifying a family of
marginal distributions over a continuum of timescales. It should
be stressed again that the multi-scaling relations apply only over
fine timescales, so that one must resort to other methods (e.g.,
monofractal scaling) for coarser timescales. For the purposes of
this discussion, we restrict ourselves to scenarios in which the
performance-relevant timescale is within the fine-scale regime
of the multi-scaling relations.

A multi-fractal characterization of the fine timescale behav-
ior specifies the dependence of E(A%(A)) on A. As seen from
Eq. (3), the family of functions E(A%(A)) (one function for
each ¢) is replaced by 7(¢q) and C(q). Although this is a great
simplification, we still need 7 and C for each ¢. This is a highly
parameterized description, of limited use in practice. This moti-
vates the development of more parsimonious constructions, such
as the multi-fractal cascade discussed in Section III, that can
generate fine-scale behavior from a given coarse-scale behavior
in a way that depends on just a single parameter p. The cascade
generator allows all the separate parameters 7(g) to be deter-
mined by the parameter p.

Eq. (6) also demonstrates that a multi-fractal characteriza-
tion in terms of 7(q) or f(a) is only “half-complete” in that it
provides the scaling exponents, but not the constant pre-factors
C'(q) needed to evaluate the sum in (6). In analogy with an FBM
model with parameters {m, a, H}, this is equivalent to provid-
ing the Hurst parameter H, but not the peakedness parameter a.
A separate procedure must be used to fix the pre-factors C(q).
Based on the earlier observations of the adequacy of the FBM
model for TCP data at coarse timescales, the procedure here is
to adopt an FBM model as an approximation for these coarser

JOURNAL OF COMMUNICATIONS AND NETWORKS. VOL.3. NO.4, DECEMBER 2001

scales. Such a procedure accomplishes two tasks: first it parsi-
moniously describes the coarse-scale behavior not modeled by
the multi-fractal cascade; second, it provides a “boundary condi-
tion” or starting point from which we can compute the constant
pre-factors.

To summarize, our approach is based on:

¢ fincling analytical expressions for the scaling exponents of
a multi-fractal cascade, which is feasible, at least for sim-
ple cascades;

¢ using the “boundary condition” of an FBM description
over coarser timescales to determine the constant pre-
factors.

This approach, of matching FBM at coarse timescales to a multi-
fractal cascade at fine timescales, should be reasonable for mod-
eling TCP traffic. For video, there is an intermediate time
regime which has to be modeled as well.

Assuming that the cascade construction is applied at the level
of individual streams, the moments of the MFC interpolated pro-
cess over fine timescales are approximately given by:

E(A%Y pe (1) = E(A% 5 (0)(t/6) 79,

where we assume that an FBM description is valid for timescales
greater than #, and a multi-fractal cascade is used below it.
Eq. (8) is the condition of continuity of E(A%(t)) across 6. In
terms of the parameter p of the semi-random MFC, the function
7(g) is given by

(8)

P+ (1~ p)ff} ‘ o)

7(g) =1+ log, [ 5

The boundary condition at # is obtained from

k<q/2
4 — q q—2k 2H\Kk (97 _ 1\11
B )= 3 (5) 0 wme 2k 11
(10)
where we have used the fact that Apppm(f) = mé +

VamX gz (8), with X ppar(6) anormal random variable hav-
ing zero mean and #*# variance.” Thus, in principle, given a
description of the traffic in terms of a coarse timescale FBM
model, with a multi-fractal cascade generator of fine timescale
fluctuations, one can estimate several performance measures.

The values of the parameters for this analytical model are
taken to match the observations for TCP traffic noted in the
previous sections. First, a transition between self similarity
and multifractality was found to occur at § = 512 ms. At
coarser timescales, the traffic exhibited features of an FBM with
m = 92.0,a = 204, and H = 0.8, in units of bytes and millisec-
onds. At finer timescales, the structure function matched that of
a semi-random cascade with p = 0.65. Accordingly, these are
the parameter values used in the analytical calculations.

We will now compare the prediction of Eq. (7) for the number
of sources N of TCP flows that can be supported, using either
an exactly self-similar model (FBM), or an asymptotically self-
similar model whose fine timescale behavior is described by the
multi-fractal cascade of Section III. In order to do this, we have

7(2k — 1)l is the double factorial: (2k — 1)!! = (2k — 1)(2k — 3)--- 1.
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Table 1. Allowed occupancy on a link as a function of the traffic model
and the link speed.

link speed multifractal model | FBM model
T1 (1.54 Mb/s) 0.228 0.341
El (2.05 Mb/s) 0.273 0.396
Ethernet (10 Mb/s) 0.636 0.684
DS3 (43 Mb/s) 0.854 0.854
OC-1 (49.5 Mbfs) 0.866 0.866
OC-3 (150 Mb/s) 0.930 0.930
OC-6 (300 Mb/s) 0.954 0.954
OC-12 (601 Mb/s) 0.970 0.970

to choose specific values for various network parameters. The
tolerance for losses is taken to be ¢ = 10™*. We explore a range
of link speeds from T1 to OC-12 (corresponding to payload rates
ranging from 1.54 to 601 Mb/s). Regardless of the link speed,
the buffer size is taken to be 50 ms, so B = 50C bytes if the
link speed C' is expressed in bytes/ms.

Table 1 compares the multifractal and FBM models for the
operating-point predictions they produce for these scenarios.
The horizontal line through the table separates the cases in
which the multi-fractal model predicts safe operating points that
are significantly different from the FBM model. As can be seen
from Table 1, when the link rate is relatively small, compara-
ble to the peak rate of the stream whose traffic was character-
ized, the multifractal model shows the safe operating point to
be at a significantly lower occupancy than would be suggested
by the FBM model. For these scenarios, the relevant timescales
of queuing are below the 512 ms threshold, and the deviations
are explained by the non-Gaussian marginals and change in the
scaling exponent below the threshold. As link speeds increase,
the multi-scaling features become less relevant for two reasons.
First, these scenarios correspond to the aggregation of a large
number of sources so that the marginals of the aggregate are
well represented by a Gaussian distribution. Secondly, the rel-
evant timescales increase beyond the lower cutoff, as the buffer
size is scaled proportionally to the link rate, and utilizations in-
crease. Intuitively, the timescale, at which traffic fluctuations
are most likely to overflow a buffer, should be proportional to
the size B/(C(1 — U)) of the buffer expressed as a time for
the excess capacity C'(1 — U) to serve the fluctuations, where
U is the link’s utilization. (For purely FBM arrivals, this intu-
ition is accurate and the proportionality constant is H /(1 — H).)
Based on this intuition, when buffer sizes are scaled to keep
B/C constant, multiplexing gains should allow U to rise and
hence the performance-relevant timescale to rise as well. Even-
tually, the performance-relevant timescale crosses from the fine
timescales of the multi-scaling regime to the coarse scales of the
self-similar regime.

Finally, we will briefly consider the impacts of closed loop,
flow control feedback on these conclusions. The traffic offered
by a source will decrease as network delays increase, so that the
number of sources that can be supported for a given utilization
will increase. Secondly, safe operating points should also in-
crease. Our experience indicates that the utilizations at which
open loop models predict poor performance (e.g., high losses)

roughly coincide with regions of poor performance (e.g., low
throughputs caused by excessive delays) predicted by closed
loop models. An alternative to the open loop models studied
here is to perform detailed network simulations based on TCP
level source models that incorporate the details of TCP dynam-
ics. However, in practice, from the viewpoint of network oper-
ations such detailed models are not usable as many of the pa-
rameters that describe TCP source behavior cannot be estimated
from network level measurements. For this reason, IP flow
level models (e.g., self similar or multi-scaling descriptions) that
can be parameterized on the basis of network level measure-
ments are useful. In fact, much of network engineering today is
done on the basis of open loop analytical and simulation mod-
els of network elements. Models that additionally incorporate
fine timescale fluctuations in traffic can be expected to provide
more accurate engineering rules over a wider range of scenar-
ios. Finally, it is expected that the open loop traffic description
framework will still be valid with network congestion, but the
values of some of the specific parameters (e.g., the cascade pa-
rameter p) will change, while FBM parameters associated with
the asymptotic long-time behavior will be unaffected [8]. The
longer term challenge is to develop phenomenological models
that can predict these changes.

VI. CONCLUSIONS AND FURTHER WORK

In this paper we have investigated a structural modeling ap-
proach to describe the fine timescale behavior in wide area TCP
and MPEG?2 video traffic. This is a problem of engineering im-
portance, as demonstrated by the performance impacts of these
fine timescale fluctuations studied in this paper. The following
summarizes our findings:

e Traffic has fine timescale features that cannot be described
by simple Gaussian self-similar models earlier shown to
be adequate for LAN traffic. This conclusion is based on
the specific WAN TCP and MPEG video traces analyzed
in this report, as well as many more similar traces not ex-
plicitly discussed here. The conclusion confirms recent
studies on other WAN TCP traces [18], [19].

e These fine timescale features in the traffic adversely affect
performance at low utilizations. Long time correlations,
which were shown to be very important for LAN traffic
performance [8], continue to affect performance at high
utilizations.

e For WAN TCP and MPEG video, the fine timescale fea-
tures fit reasonably to a multifractal cascade description,
in accordance with recent work [18], [19]. In both cases,
aggregating traffic to the “edge” of the fine timescale
regime and interpolating down with a multifractal cascade
matches performance (as measured by trace-driven simu-
lations) very well.

e (a) For TCP, the complex behavior in the fine timescale
regime is believed to be caused by TCP flow controls that
operate within the round-trip time (RTT) of packet receipt
acknowledgements [21]. This short time regime gives way
to FBM behavior when aggregated to the RTT, reminis-
cent of LAN traffic.

(b) For video traffic, the fine timescale behavior occurs at
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the sub-frame level, and is due to the intrinsic properties of
MPEG coding scheme. Between the subframe and group
of frames (GOF) levels, the coding cycles between differ-
ent types of frames in the well-known pattern of MPEG2.
This does not follow any simple scaling law, but has been
described by Markovian models [11], [12]. For time scales
greater than the GOF level, one sees FBM behavior.

e For traffic that can be modeled by FBM at long timescales
and a multifractal at fine timescales (as seems to be the
case for TCP traffic) we obtain analytical performance es-
timates and engineering parameters, such as the number of
sources that can be admitted given QoS parameters. The
analytical treatment also shows that the usual multifractal
description in terms of (a family of) scaling exponents is
incomplete and must be supplemented by estimating pref-
actors/amplitudes. Unfortunately, this is an aspect of sta-
tistical inference that is currently overlooked. Much at-
tention is paid to estimate scaling exponents, while what
is really required is the joint estimation of scaling expo-
nents and prefactors.

e (a) For WAN TCP, where the fine timescale features are

believed to arise from network feedback, a more complete
description would consist of modeling TCP feedback ex-
plicitly, and generating these features from the flow con-
trol in closed loop models. However, treating the fine
timescale parameters as being given a priori, as we have
done, is a useful first step in analysis.
(b) For MPEG video, where the fine timescale features
arise from the coding mechanism, it is not necessary to
incorporate feedback. It would be useful to relate the fine
timescale behavior directly to specific features of MPEG
coding. This is a subject for further research, along with
the modeling of the intermediate regime between the fine
and coarse timescales.

e For WAN UDRP traffic, which has neither complex coding
nor network feedback effects, a simple FBM description is
found to be adequate for both traffic characterization and
engineering analysis.

There are numerous avenues to expand this work, including
repeating these experiment with additional data and video traces
(in progress); implementing the numerical methods to analyze
traffic generated by multi-fractal cascades; and extensions to an-
alyze and describe packet traffic over the full range of engineer-
ing timescales of interest. In the longer term, the objective is to
develop robust, tractable, parsimonious and predictive network
traffic models and management methods that are usable in prac-
tice.
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