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ABSTRACT

This research discusses the application of the control variables to achieve a more precise estimation for the target 
response in queueing network simulation. The efficiency of control variable method in estimating the response depends 
upon how we choose a set of control variables strongly correlated with the response and how we construct a function 
of selected control variables. For a class of queuing network simulations, the random variables that drive the simulation 
are basically the service-time and routing probability random variables. Most of applications of control variable method 
focus on utilization of the service time random variables for constructing a controlled estimator. This research attempts 
to suggest a controlled estimator which uses these two kinds of random variables and explore the efficiency of these 
estimators in estimating the reponses for computer network system. Simulation experiments on this model show the 
promising results for application of routing probability control variables.  We consider the applications of the routing 
probability control variables to various simulation models and combined control variables using information of service 
time and routing probability together in constructing a control variable as future researches. 

Key words : Queueing Network Simulation, Control Variable Method, Routing Probability Control Variable, Combined 
Control Variable 

요   약

본 연구는 대기행렬 네트워크 시뮬레이션에서 통제변수를 활용하여 목표 반응변수를 보다 더 정확히 추정하는 기법을  탐색

한다. 반응변수 추정에서 통제변수기법의 효율성은 반응변수와 높은 상관관계를 가지는 통제변수의 선택과 선택된 통제변수를 

이용하여 통제추정량을 어떻게 정의하는가에 따라 달라진다. 대기행렬 네트워크 시뮬레이션 모형에서 확률적 모형의 발전과정

은 확률적 서비스시간과 분지 확률에 의하여 재현된다. 대부분의 통제변수기법은 통제추정치 구성에서 서비스 시간 확률변수를 

사용한다. 본 연구는 서비스 시간 확률변수와 분지 확률변수를 동시에 사용하는 통제 추정량을 제안하고 이를 컴퓨터 네트워크 

시스템의 관심 반응변수 추정에 응용하여 그 효율성을 탐색하고자 한다. 시뮬레이션 결과는 반응변수 추정에 있어서 분지확률 

통제변수의 활용 가능성을 제시하고 있으며, 서비스-시간과 분지확률을 동시에 이용하는 결합 통제변수의 활용은 향후 연구가 

필요한 분야로 판단된다. 

주요어 : 대기행렬 네트워크 시뮬레이션, 통제변수기법, 분지확률 통제변수, 결합 통제변수  
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1. 서  론

Although simulation is frequently the only feasible 
method for estimating the steady state parameters of a 
complex queueing system, the resultant computing cost 
can be serious disadvantage. This research discusses the 
application of control variables to achieve a more 
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precise estimation for the target response in queueing 
networks. Such networks are commonly used to model 
the contention for resources in job shop type systems. 
This research is specifically interested in the use of 
control variables for estimating the response of interest 
in queueing network system. A control variable is a 
random variable whose expectation is known and 
correlated with a statistical estimator for response. In 
simulation experiments, the realizations of stochastic 
components of simulation model are obtained from 
known distributions and some of their outputs may have 
strong correlations with response. Such variables could 
be candidates for good control variables (Law, 2007). 
For instance, suppose we try to estimate the mean 
sojourn time of customer in the queuing system and 
service times of server have a strong correlation with 
sojourn time of customer in this system. Then the service 
time random variable could be a good control variable 
for estimating the sojourn time of customer. 

In the application of control variable method, a 
controlled (or new) estimator for the response is usually 
formed as a direct (or old) estimator plus linear function 
of control variables. The method of control variable 
exploits intrinsic correlations between target response 
and selected auxiliary outputs (control variables), and by 
using this relationship, reduces the variance of estimator. 
The efficiency of control variable in estimating the 
response depends upon how we choose a set of control 
variables strongly correlated with the response and how 
we construct a function of selected control variables. For 
a class of queuing network simulations, the random 
variables that drive the simulation are basically the 
service time random variables and routing random 
variables. The service-time control variable is quite 
successful in estimating the mean response of system, 
and under a certain condition, the control variable 
combined with other variance reduction methods such 
as antithetic variable and common random variable is 
very efficient in estimating the response of interest 
(Kwon, 2005 and Kwon and Tew, 1994a). On the other 
hand, the routing-probability control variable is rarely 
applied since the stationary probabilities of stations in 
general queueing network are not easily obtained. Due 

to this reason, most applications of control variable 
method focus on utilization of the service time random 
variables for constructing a controlled estimator. This 
research attempts to suggest a controlled estimator 
which uses these two kinds of random variables simul-
taneously and explore the efficiency of this estimator in 
estimating the reponses of interest for computer network 
systems.

2. Method of Control Variable   
 
Consider a simulation run where we try to estimate a 

mean response  of system. We let  be an unbiased 
estimator for , generated from simulation run. A 
random variable , also generated from simulation 
run, is the th control variable if      is known 
and it is strongly correlated with . We let   be a 
column vector of  such control variables with elements 
 ⋯ . Also we let  be the expectation of . 
Then for the -dimensional column vector of constant 
coefficients, , the controlled estimator of ,  given 
in following equation is an unbiased estimator of :

   ′ (1)

The vector  which minimizes the variance of  is 
given by 

′ ∑  ,   (2) 

where   is a row vector of covariance 
between  and , and ∑ is the covariance matrix of .  
The resulting minimum variance of controlled estimator 
of  is given by 

  
  

 ,    (3)

where   and   ∑ ′  is the square 
of the multiple correlation coefficient between  and  
(Borogobac and Vakili, 2008). The quantity   is 
called as the minimum variance ratio. It is the factor by 
which the variance of  could be reduced if the optimal 
coefficient vector of  is known. Hence it is the 
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theoretical potential to be achieved by the control 
variables. In general since the optimal value of  is 
unknown, we have to estimate it in practice.      

At given input parameters of system (or design point), 
if a simulation run is sufficiently long, then the observed 
performance of  and control variables  from such a 
run could be considered as observations from normal 
distribution, respectively. We suppose that we have  
times independent such runs and let  be the value of 
estimator  and    ⋯  ′ be the output 
of control variables from the th independent run. Then 
  and   are observations from the -variate 
normal distribution given as follows:

 

  ∼  



 


   

  
  ∑  (4)      

(Kwon and Tew, 1994b). Thus given , the conditional 
distribution of  is  normal with expectation 

  ′ (5) 
 

and variance  

  
  

   (6)  

which is the minimum variance given in (3). ( Anderson, 
1984). Hence conditional on    ⋯, we have 
classical regression problem with 

  ′     ⋯ , (7)

where   is an independent and normally distributed 
random variable with mean zero and variance given by 
(6). The least squares estimators  and  in (7) are given 
by respectively, 

   ′  and      (8)
  

where 
 



 is the sample mean of response; 

 
 



 is the -dimensional column vector of 

control variables whose th element is given by 

 
 



;  and   and  are the sample 

estimators of  and  in (4), respectively. Then the 
variance of  is given by 

 



 




 (9) 

(Szechtman, 2003). The term  in (9) is 
the loss factor due to the estimation of . Thus the effect 
of control variables is measured by the product of the 
loss factor and the minimum variance ratio  . 
Due to the trade-off relationship between the loss factor 
and the multiple correlation coefficient, it is important to 
select the effective set of control variables not too large.

 

3.  Control Variable with Routing 
Probability

 
Queueing networks are often used to model interactive 

computer systems. For certain networks with exponential 
service times, steady state behavior can be obtained analyti-
cally. However, networks containing such features of 
real system as scheduling based on priorities, blocking 
due to capacity limitation, and non-exponential service 
times are not analytically tractable, in general. Hence, 
their behaviors must be estimated through simulation. 
Simulation needs lots of efforts to obtain estimators with 
high precision. Thus, it is an issue how we can conduct 
simulation efficiently. For this end, we focus on developing 
control variables for queueing networks which allow 
priorities, blocking and arbitrary service time distributions. 

For a -station queueing network, upon arrival at 
station , an entity waits for service according to 
queueing discipline prescribed for that station. At the 
instant the entity engages a server at station , the 
required service time is sampled from service time 
process {  ≥} consisting of independently and 
identically distributed random variables with mean   
and variance  . On the completion of this service time, 
entity’s next going station is determined by indepen-
dently sampling from the transition probability distri-
bution specified at station . The considered network 
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consists of  service stations which are a single server or 
multiple servers. It is assumed that the K entities 
circulate service stations infinitely in a following 
fashion:  

(a) The sequence of service stations visited by an 
entity is an irreducible Markov chain with state 
space  which is a subset of {  ⋯ }.

(b) The sequence of service times at the th service 
station consists of independently and identically 
distributed random variables which have finite 
mean and variance. 

(c) The sequence of service stations visited and the 
service time sequences are mutually independent 
random sequences. 

The class of queueing network we defined is quite 
general. We have no assumptions on queueing disciplines 
or about capacity of service stations. 

We next define a set of control variables for this class 
of queueing networks. The basic random variables 
which drive the simulation of such network are the 
service time random variables and the multinomial 
routing random variables. The latter random variables 
control the flow of entities in the network and their 
probability distributions can be given by the Markov 
transition matrix . We let a row vector of 
  ⋯  denote the stationary probability 
vector for entities. Then the vector  is the unique 

solution to the equation  and 
 



  . To 

construct control variables, we need to find functions of 
these random variables whose expectation are known 
and which are correlated with estimators for system 
performance of interest. Intuitively performances of 
either system sojourn time or average waiting for service 
are correlated with` service times of servers and routing 
probabilities for entity's flow. So we try to define sets of 
control variables which characterize these quantities. 
Over the simulation time period  , we define the 
following counting variables for the system: 

   number of service times finished at station   

         during                                                       (10)

  
 



  and   
 

 

 (11)

As the simulation time  (or number of service times 
at service station) increases to infinity, the following 
asymptotic expectations exist and are known as follow: 

lim
→∞
      (12)  

lim
→∞
     (13)  

lim
→∞
      (14)  

(Lavenberg, Moeller and Welch, 1982). 
We first consider the control variables of service-time 

() at  stations in queueing networks:  ⋯
′  with    which is the sample 
mean of service time at station  obtained from 
simulation run over time period  . Then we can 
construct the controlled estimator of  as follows:

   ′⋯    (15)

If these control variables are highly correlated with 
mean response , it would be a better unbiased estimator 
for . Also we can expect that the flow estimator of 
routing probability for service station ,  
 may have not a small correlation with mean 
response of . Since its mean is known as , similarly 
to equation (15), we can construct a routing probability 
controlled estimator of  as follows:

   ′⋯           (16)

Next we develop another new control variable which 
is the multiplied variable of  and . That is, 

        (17)

We expect that  is also to be correlated with 
estimator for response and its expectation  is known to 
be the  as  goes to infinity(see equation (14)). 
Since this type of combined control variables  
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Fig. 1. Central server model

   ⋯   reflect both service time and 
flow effects together, they appear to be attractive control 
variables. For a general case of  control variables, we 
define the unbiased controlled estimator for  as 
follows: 

   ′   ⋯  
                                                     (18)

In applying control variables, we have to estimate the 
unknown parameter vector  ,   and   in (15), (16) 
and (18), respectively. With respect to the obtained 
information in the course of simulation, we consider the 
3 control variables of service-time, routing probability 
of station, and combined these two information simul-
taneously. In next section, we explore the efficiencies of 
these control variables through simulation experiment 
on computer network model.  

 

4. Simulation Experiment and its 
Result

 
We apply the control variable method which utilizes 

the information of service times and routing probabilities 
in construction of control variables to computer network 
model. We conduct a set of simulation experiments on 
this model to evaluate the performance of control 
variable method and offer a summary and results.

4.1 Computer network model
 Figure 1 shows a model of the multi-programmed 

computer system. With goal similar to that of time-sharing, 
a multi-programmed computer system attempts to 
utilize its resources more efficiently than does a batch 
processing operation. In particular a number of jobs are 
permitted simultaneous access to the resources of the 
system in such a way that the CPU is busy processing 
one job while various input-output peripheral units are 
processing some of the others concurrently. In this 
model, it is of interest to study the utilizations of 
stations, sojourn time and throughput of system. We 
consider the central server model that permits the 
inclusion a number of peripheral devices. 

Exactly K jobs (programs) are permitted into computer 
system and circulate endlessly sharing the  resources of 
system. The central server, node 1, is meant to represent 
the CPU and the  nodes (or stations) represent 
peripheral devices, for instance, a rotating disk memory, 
a swapping drum, a magnetic tape unit, a data cell, and 
so on. In such a multiprogramming environment, jobs do 
indeed circulate among these devices in such a way that 
they require the attention of the CPU followed by the 
need for some peripheral device, after which they again 
requiring the attention of some other peripheral device.

The transition probability,  represents the probability 
of going next to node  upon leaving node , and in this 
model, we see the constant circulation back to the central 
server, the CPU. Thus we have the transition probability 
matrix   with  

 








   ≤≤

 ≤≤   
 

 (19)

and  . In a true multiprogramming environment, 
most jobs eventually leave, at which time a new job will 
be inserted into system. This is represented in the model 
by permitting the job to return directly back to the CPU 
with probability  , which represents the departure of an 
old job and insertion of a new job to replace it, with the 
recognition that this new request for service in the CPU 
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Table. 1. Variance of Estimator and Percentage Reduction in Variance (PRV) 

Performance 
Estimator

Without Control Service Time Control 
(SC)

Routing Probability 
Control (RC) Combined Control (CC)

Mean Var Var PRV Var PRV Var PRV

Throughput
Utilization 1 
Utilization 2
Utilization 3
Utilization 4
Utilization 5
Utilization 6
Sojourn Time

576
0.57
0.99
0.58
0.35
0.48
0.09
3351

1064
77E-4
18E-5
70E-5
37E-5
53E-5
68E-6
33833

792
67E-4
16E-7
60E-5
17E-5
44E-6
21E-6
26264

25.6
12.1
10.4
14.2
53.1
17.2
67.8
22.4

229
64E-4

13E-724E-5
21E-5
37E-5
64E-6
7330

78.4
16.0
26.8
65.9
41.6
29.7
54.6
78.3

791
70E-4
16E-7
54E-5
18E-5
44E-5
50E-6
26263

25.7
8.75
9.8
22.6
50.7
17.5
25.9
22.4

is the demand by the supervisory system for this job 
interchange. Thus the number of jobs in the system 
remains constant at a value of K.  

For the simulation of this model, we assume that 1 
central server and 5 peripheral units are operating. At the 
station , jobs joins a FIFO queue to wait for service of a 
single server. The service-time distributions of stations 
1, 2, 3, 4, 5, and 6 are Expon(10), Expon(50), N(40, 
400), Expon(40). Uniform(60,100) and Expon(30), 
respectively. The probability   representing the departure 
of an old job and insertion of a new job to replace it is 
10% and the number of jobs in the system remains 
constant at a value of 20. After central service of station 
1, jobs go to station  for another peripheral device 
service with probabilities:           
   and     Completing the service of the th 
peripheral device, jobs go back to the central server for 
another service of device or leave from system. This 
kind of circulations continue repeatedly. For a more 
detailed description of this system, see the Section 4.13 
of Kleinrock (1976). 

4.2 Experimental Results
To perform an experimental evaluation of three types 

of control variables, using AweSim simulation language 
(Pritsker and  O’reilly, 2008), we conduct 40 independent 
replications for the 10,0000 units time period. During 
the course of each simulation run, we collect the 
throughput of system, utilizations of 6 stations and 
system sojourn time as well as service times at 6 stations 
and routing probabilities at station 1. Based on correlations 

between performances of interest and control variables, 
we select three controls showing highest correlations 
with performances. To construct the control variables in 
equations (16) and (18), we solve the stationary equation 
, and compute the stationary probability vector, 
      , and then we 
establish the controled estimators given in equations 
(15), (16) and (18). 

Table 1 summarizes the simulation results showing 
the variances of estimators and their percentage reductions 
in variances (PRV). In estimating the throughput, 
sojourn time of system, and utilization of stations 1-3, 
and 5, control variable of routing probability yields 
superior results to service-time controls and combined 
controls. The PRV of routing probability control 
variable is in the range from 16% to 78%. Especially in 
estimating the throughput and sojourn time of system, 
routing probability control is very efficient and its PRV 
is more than 78%. Comparison of performances of three 
types of control variables gives that a) in estimating the 
throughput and sojourn time, the efficiencies of 
service-time and combined controls are similar and their 
PRVs are around 25% and 22% respectively, and b) in 
estimating the utilizations of stations 4 and 6, 
service-time control is more efficient than the routing 
probability and combined control variables. Contrary to 
our expectation on combined control, its effectiveness is 
not good as that of routing probability control. We 
conjecture that this simulation results of computer 
network model show the promise for application of 
routing probability control variable in practice.
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5. Conclusion
 
This research attempts to suggest controlled estimators 

which use the service-time and routing-probability 
random variables, and explores their efficiencies in 
estimating the throughput, utilizations of stations and 
sojourn time of central server model. Using the stationary 
probability and service time at each node, we construct 
the three types of control variables. Simulation results 
on computer network model show that the routing 
probability control variable is superior to service time 
and combined control variables. Most researches concerning 
about application of control variable method focus on 
service-time type control variable. This research  presents 
that routing probability random variables may also be 
good candidates for a set of selected control variables. 
The routing-probability control variable is promising for 
applications to various simulation models when the 
stationary probability of each node is available in 
simulation model. We consider the applications of the 
routing probability control variables to various simulation 
models and combined control variables using infor-
mation of service time and routing probability together 
in constructing one control variable as future researches. 
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