st=AlE20[Hets] =2X]
( Vol. 21, No. 3, pp. 71-78 (2012. 9) _

http://dx.doi.org/10.9709/JKSS.2012.21.3.071

Application of Control Variable with Routing Probability to Queueing

Network Simulation

Chi-Myung Kwon'' - Sanggyu Lim’

7188 UES3 AlZdojMollM EXIZHE

849 - 9

SxH40| S8

ABSTRACT

This research discusses the application of the control variables to achieve a more precise estimation for the target
response in queueing network simulation. The efficiency of control variable method in estimating the response depends
upon how we choose a set of control variables strongly correlated with the response and how we construct a function
of selected control variables. For a class of queuing network simulations, the random variables that drive the simulation
are basically the service-time and routing probability random variables. Most of applications of control variable method
focus on utilization of the service time random variables for constructing a controlled estimator. This research attempts
to suggest a controlled estimator which uses these two kinds of random variables and explore the efficiency of these
estimators in estimating the reponses for computer network system. Simulation experiments on this model show the
promising results for application of routing probability control variables. We consider the applications of the routing
probability control variables to various simulation models and combined control variables using information of service
time and routing probability together in constructing a control variable as future researches.
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Although simulation is frequently the only feasible
method for estimating the steady state parameters of a
complex queueing system, the resultant computing cost
can be serious disadvantage. This research discusses the

application of control variables to achieve a more
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precise estimation for the target response in queueing
networks. Such networks are commonly used to model
the contention for resources in job shop type systems.
This research is specifically interested in the use of
control variables for estimating the response of interest
in queueing network system. A control variable is a
random variable whose expectation is known and
correlated with a statistical estimator for response. In
simulation experiments, the realizations of stochastic
components of simulation model are obtained from
known distributions and some of their outputs may have
strong correlations with response. Such variables could
be candidates for good control variables (Law, 2007).
For instance, suppose we try to estimate the mean
sojourn time of customer in the queuing system and
service times of server have a strong correlation with
sojourn time of customer in this system. Then the service
time random variable could be a good control variable
for estimating the sojourn time of customer.

In the application of control variable method, a
controlled (or new) estimator for the response is usually
formed as a direct (or old) estimator plus linear function
of control variables. The method of control variable
exploits intrinsic correlations between target response
and selected auxiliary outputs (control variables), and by
using this relationship, reduces the variance of estimator.
The efficiency of control variable in estimating the
response depends upon how we choose a set of control
variables strongly correlated with the response and how
we construct a function of selected control variables. For
a class of queuing network simulations, the random
variables that drive the simulation are basically the
service time random variables and routing random
variables. The service-time control variable is quite
successful in estimating the mean response of system,
and under a certain condition, the control variable
combined with other variance reduction methods such
as antithetic variable and common random variable is
very efficient in estimating the response of interest
(Kwon, 2005 and Kwon and Tew, 1994a). On the other
hand, the routing-probability control variable is rarely
applied since the stationary probabilities of stations in
general queueing network are not easily obtained. Due

St=ZA|E 20| M5t
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to this reason, most applications of control variable
method focus on utilization of the service time random
variables for constructing a controlled estimator. This
research attempts to suggest a controlled estimator
which uses these two kinds of random variables simul-
taneously and explore the efficiency of this estimator in
estimating the reponses of interest for computer network

systems.

2. Method of Control Variable

Consider a simulation run where we try to estimate a
mean response p of system. We let y be an unbiased
estimator for p, generated from simulation run. A
random variable c(i), also generated from simulation
run, is the ith control variable if Elc(i)] = p, is known
and it is strongly correlated with y. We let C be a
column vector of ¢ such control variables with elements
c(@)(i=1,--,¢). Also we let y, be the expectation of C.
Then for the ¢-dimensional column vector of constant
coefficients, o, the controlled estimator of 1, y(a) given
in following equation is an unbiased estimator of .:

yla)=y— o' (C—p,) ()

The vector o which minimizes the variance of y(a) is
given by

od=0,3", (2

where o, = Gou(y,C) is a row vector of covariance
between y and C, and X, is the covariance matrix of C.
The resulting minimum variance of controlled estimator
of y(a) is given by

Var[y(a)] = (1—}336) Ui, 3)

where o) = Var(y) and R, =0,.3 "0,/ o) is the square

ye
of the multiple correlation coefficient between y and C
(Borogobac and Vakili, 2008). The quantity (1— &) is
called as the minimum variance ratio. It is the factor by
which the variance of y could be reduced if the optimal

coefficient vector of « is known. Hence it is the
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theoretical potential to be achieved by the control
variables. In general since the optimal value of « is
unknown, we have to estimate it in practice.

At given input parameters of system (or design point),
if a simulation run is sufficiently long, then the observed
performance of y and control variables C from such a
run could be considered as observations from normal
distribution, respectively. We suppose that we have n
times independent such runs and let y; be the value of
.c(q),) be the output
of control variables from the ith independent run. Then

estimator y and C = (c(1),,¢(2),, -+

y, and C are observations from the (¢+1)-variate

[

normal distribution given as follows:

el 2 @

ye? c

(Kwon and Tew, 1994b). Thus given C, the conditional
distribution of y is normal with expectation

Eyld=p+d (C—p,) 5)
and variance
Var(yl Ol = (1-R’) o2 (6)

which is the minimum variance given in (3). ( Anderson,
1984). Hence conditional on ¢ (i=1,---,n), we have
classical regression problem with

y; = nta (G —p)+ e, i=1m, )

i

where ¢ is an independent and normally distributed
random variable with mean zero and variance given by
(6). The least squares estimators z and « in (7) are given
by respectively,

p=y —a/(C—p) and o= 5 'S (8)

yc

n
where y= Zyj/n is the sample mean of response;
j=1

=Y C/n is the g¢-dimensional column vector of
i=1

control variables whose kth element is given by

n

c(k)= Ec(/c)j/n;

j=1

and S, and S, are the sample

estimators of X, and o,, in (4), respectively. Then the

variance of 1 is given by

2

Var (i) = ( I AR ©)

n—q—2
(Szechtman, 2003). The term (n—2)/(n—q—2) in (9) is
the loss factor due to the estimation of «. Thus the effect
of control variables is measured by the product of the
loss factor and the minimum variance ratio (1—R..).
Due to the trade-off relationship between the loss factor
and the multiple correlation coefficient, it is important to
select the effective set of control variables not too large.

3. Control Variable with Routing
Probability

Queueing networks are often used to model interactive
computer systems. For certain networks with exponential
service times, steady state behavior can be obtained analyti-
cally. However, networks containing such features of
real system as scheduling based on priorities, blocking
due to capacity limitation, and non-exponential service
times are not analytically tractable, in general. Hence,
their behaviors must be estimated through simulation.
Simulation needs lots of efforts to obtain estimators with
high precision. Thus, it is an issue how we can conduct
simulation efficiently. For this end, we focus on developing
control variables for queueing networks which allow
priorities, blocking and arbitrary service time distributions.

For a g-station queueing network, upon arrival at
station k, an entity waits for service according to
queueing discipline prescribed for that station. At the
instant the entity engages a server at station k, the
required service time is sampled from service time
process {s(k);:j =1} consisting of independently and
identically distributed random variables with mean
and variance o2. On the completion of this service time,
entity’s next going station is determined by indepen-
dently sampling from the transition probability distri-
bution specified at station k. The considered network
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consists of g service stations which are a single server or
multiple servers. It is assumed that the K entities
circulate service stations infinitely in a following
fashion:

(a) The sequence of service stations visited by an
entity is an irreducible Markov chain with state
space k which is a subset of {1, 2, ---, ¢}.

(b) The sequence of service times at the kth service
station consists of independently and identically
distributed random variables which have finite
mean and variance.

(c) The sequence of service stations visited and the
service time sequences are mutually independent

random sequences.

The class of queueing network we defined is quite
general. We have no assumptions on queueing disciplines
or about capacity of service stations.

We next define a set of control variables for this class
of queueing networks. The basic random variables
which drive the simulation of such network are the
service time random variables and the multinomial
routing random variables. The latter random variables
control the flow of entities in the network and their
probability distributions can be given by the Markov
transition matrix & We let a row vector of
r=(r(1), -

vector for entities. Then the vector = is the unique

,m(g)) denote the stationary probability

solution to the equation 7R=n and ﬁ]ﬂ'(i)il. To

i=1
construct control variables, we need to find functions of
these random variables whose expectation are known
and which are correlated with estimators for system
performance of interest. Intuitively performances of
either system sojourn time or average waiting for service
are correlated with® service times of servers and routing
probabilities for entity's flow. So we try to define sets of
control variables which characterize these quantities.
Over the simulation time period [0, t], we define the
following counting variables for the system:

f(k, t) = number of service times finished at station

HEINEE PSR

=X

k during [0, ¢] (10)
flk.t)

Efkt ) and s(k,t)= E (11)

E=1 =

As the simulation time ¢ (or number of service times
at service station) increases to infinity, the following
asymptotic expectations exist and are known as follow:

tlimE[s(k, )/ (ks £)]= g (12)
limE[f(k, )/ ) =r(k) (13)
HmEls (k,t) /f(8)]=m(k) (14)

t— oo

(Lavenberg, Moeller and Welch, 1982).

We first consider the control variables of service-time
(CS) at q stations in queueing networks: CS= (cs(1), -+,
es(q)) with cs(k) =s(kt)/f(kt) which is the sample
mean of service time at station k obtained from
simulation run over time period [0, ¢t]. Then we can
construct the controlled estimator of ;. as follows:

Ys=y—- a,g,(cs(l) T He(1) CS(Q) *M,,(q)) (15)
If these control variables are highly correlated with
mean response y, it would be a better unbiased estimator
for u. Also we can expect that the flow estimator of
routing probability for service station k, cf(k)=
f(kt)/f(t) may have not a small correlation with mean
response of y. Since its mean is known as 7 (k), similarly
to equation (15), we can construct a routing probability
controlled estimator of 4 as follows:

yf (@) =y—a/(cf (1) =7 (1), ¢f (9) = (g)) (16)

Next we develop another new control variable which
is the multiplied variable of cs(k) and cf (k). That is,

em(k) =[s(k, t)/f e, O F e )/ ()] = s(kst) /£ (t) (17)

We expect that cn(k) is also to be correlated with
estimator for response and its expectation is known to
be the 7 (k)u, ) as t goes to infinity(see equation (14)).
Since this type of combined control variables cmn(k) =
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s(kt)/f(t) (k=1, ---, ¢) reflect both service time and
flow effects together, they appear to be attractive control
variables. For a general case of ¢ control variables, we
define the unbiased controlled estimator for p as

follows:

ym(e) = y—a, (em(1) = 7 (1)p,q), -
em(q) — 7(q)py(,)) (18)

In applying control variables, we have to estimate the
in (15), (16)
and (18), respectively. With respect to the obtained

unknown parameter vector «,, «; and «,,
information in the course of simulation, we consider the
3 control variables of service-time, routing probability
of station, and combined these two information simul-
taneously. In next section, we explore the efficiencies of
these control variables through simulation experiment

on computer network model.

4. Simulation Experiment and its
Result

We apply the control variable method which utilizes
the information of service times and routing probabilities
in construction of control variables to computer network
model. We conduct a set of simulation experiments on
this model to evaluate the performance of control
variable method and offer a summary and results.

4.1 Computer network model
Figure 1 shows a model of the multi-programmed

computer system. With goal similar to that of time-sharing,
a multi-programmed computer system attempts to
utilize its resources more efficiently than does a batch
processing operation. In particular a number of jobs are
permitted simultaneous access to the resources of the
system in such a way that the CPU is busy processing
one job while various input-output peripheral units are
processing some of the others concurrently. In this
model, it is of interest to study the utilizations of
stations, sojourn time and throughput of system. We
consider the central server model that permits the
inclusion a number of peripheral devices.

Py
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device ¢
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server .
P q
7
174

Fig. 1. Central server model

Exactly K jobs (programs) are permitted into computer
system and circulate endlessly sharing the ¢ resources of
system. The central server, node 1, is meant to represent
the CPU and the ¢—1 nodes (or stations) represent
peripheral devices, for instance, a rotating disk memory,
a swapping drum, a magnetic tape unit, a data cell, and
so on. In such a multiprogramming environment, jobs do
indeed circulate among these devices in such a way that
they require the attention of the CPU followed by the
need for some peripheral device, after which they again
requiring the attention of some other peripheral device.

The transition probability, r,; represents the probability
of going next to node j upon leaving node i, and in this
model, we see the constant circulation back to the central
server, the CPU. Thus we have the transition probability
matrix R=(r,;) with

2<i< g j=1 19)
0  otherwise

{pj i=1, 1<j<gq
;=11

and Epj: 1. In a true multiprogramming environment,
most jobs eventually leave, at which time a new job will
be inserted into system. This is represented in the model
by permitting the job to return directly back to the CPU
with probability p,, which represents the departure of an
old job and insertion of a new job to replace it, with the
recognition that this new request for service in the CPU
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is the demand by the supervisory system for this job
interchange. Thus the number of jobs in the system
remains constant at a value of K.

For the simulation of this model, we assume that 1
central server and 5 peripheral units are operating. At the
station i, jobs joins a FIFO queue to wait for service of a
single server. The service-time distributions of stations
1,2, 3,4, 5, and 6 are Expon(10), Expon(50), N(40,
400), Expon(40). Uniform(60,100) and Expon(30),
respectively. The probability p, representing the departure
of an old job and insertion of a new job to replace it is
10% and the number of jobs in the system remains
constant at a value of 20. After central service of station
1, jobs go to station i for another peripheral device
service with probabilities: p, =0.35, p, =0.25, p, =0.15,
p; =0.10 and p, =0.05. Completing the service of the ith
peripheral device, jobs go back to the central server for
another service of device or leave from system. This
kind of circulations continue repeatedly. For a more
detailed description of this system, see the Section 4.13
of Kleinrock (1976).

4.2 Experimental Results
To perform an experimental evaluation of three types

of control variables, using AweSim simulation language
(Pritsker and O’reilly, 2008), we conduct 40 independent
replications for the 10,0000 units time period. During
the course of each simulation run, we collect the
throughput of system, utilizations of 6 stations and
system sojourn time as well as service times at 6 stations
and routing probabilities at station 1. Based on correlations

between performances of interest and control variables,
we select three controls showing highest correlations
with performances. To construct the control variables in
equations (16) and (18), we solve the stationary equation
mR=m, and compute the stationary probability vector,
7 =(.526, .184, .131, .079, .0526, .0263), and
establish the controled estimators given in equations
(15), (16) and (18).

Table 1 summarizes the simulation results showing

then we

the variances of estimators and their percentage reductions
in variances (PRV). In estimating the throughput,
sojourn time of system, and utilization of stations 1-3,
and 5, control variable of routing probability yields
superior results to service-time controls and combined
controls. The PRV of routing probability control
variable is in the range from 16% to 78%. Especially in
estimating the throughput and sojourn time of system,
routing probability control is very efficient and its PRV
is more than 78%. Comparison of performances of three
types of control variables gives that a) in estimating the
throughput and sojourn time, the efficiencies of
service-time and combined controls are similar and their
PRVs are around 25% and 22% respectively, and b) in
estimating the utilizations of stations 4 and 6,
service-time control is more efficient than the routing
probability and combined control variables. Contrary to
our expectation on combined control, its effectiveness is
not good as that of routing probability control. We
conjecture that this simulation results of computer
network model show the promise for application of
routing probability control variable in practice.

Table. 1. Variance of Estimator and Percentage Reduction in Variance (PRV)

Perf(?rmance Without Control Service F{;né;: Control Roﬁiﬁr;ﬂ;ﬁghw Combined Control (CC)
Estimator

Mean Var Var PRV Var PRV Var PRV
Throughput 576 1064 792 25.6 229 78.4 791 25.7
Utilization 1 0.57 77E-4 67E-4 12.1 C4B-4 16.0 70E-4 8.75
Utilization 2 0.99 18E-5 16E-7 104 |3E-724E-5 26.8 16E-7 9.8
Utilization 3 0.58 70E-5 60E-5 14.2 21E-5 65.9 54E-5 22.6
Utilization 4 0.35 37E-5 17E-5 53.1 37E-5 41.6 18E-5 50.7
Utilization 5 0.48 53E-5 44E-6 17.2 GAE-6 29.7 44E-5 17.5
Utilization 6 0.09 68E-6 21E-6 67.8 7330 54.6 S50E-6 25.9
Sojourn Time 3351 33833 26264 22.4 78.3 26263 22.4

BANZOLSE =27
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5. Conclusion

This research attempts to suggest controlled estimators
which use the service-time and routing-probability
random variables, and explores their efficiencies in
estimating the throughput, utilizations of stations and
sojourn time of central server model. Using the stationary
probability and service time at each node, we construct
the three types of control variables. Simulation results
on computer network model show that the routing
probability control variable is superior to service time
and combined control variables. Most researches concerning
about application of control variable method focus on
service-time type control variable. This research presents
that routing probability random variables may also be
good candidates for a set of selected control variables.
The routing-probability control variable is promising for
applications to various simulation models when the
stationary probability of each node is available in
simulation model. We consider the applications of the
routing probability control variables to various simulation
models and combined control variables using infor-
mation of service time and routing probability together
in constructing one control variable as future researches.
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