• Title/Summary/Keyword: Quasi-F space

Search Result 50, Processing Time 0.027 seconds

Historical backgrounds of Quasi-F spaces and minimal quasi-F covers (Quasi-F 공간과 극소 Quasi-F cover의 역사적 배경)

  • Kim, Chang-Il
    • Journal for History of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.113-124
    • /
    • 2005
  • For a Tychonoff space X, C(X) is a Riesz-space. It is well known that C(X) is order-Cauchy complete if and only if X is a quasi~F space and that if X is a compact space and QF(X) is a minimal quasi-F cover of X, then the order- Cauchy completion of C(X) is isomorphic to C(QF(X)). In this paper, we investigate motivations and historical backgrounds of the definition for quasi-spaces and the construction for minimal quasi-F covers.

  • PDF

MINIMAL QUASI-F COVERS OF REALCOMPACT SPACES

  • Jeon, Young Ju;Kim, Chang Il
    • The Pure and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.329-337
    • /
    • 2016
  • In this paper, we show that every compactification, which is a quasi-F space, of a space X is a Wallman compactification and that for any compactification K of the space X, the minimal quasi-F cover QFK of K is also a Wallman compactification of the inverse image ${\Phi}_K^{-1}(X)$ of the space X under the covering map ${\Phi}_K:QFK{\rightarrow}K$. Using these, we show that for any space X, ${\beta}QFX=QF{\beta}{\upsilon}X$ and that a realcompact space X is a projective object in the category $Rcomp_{\sharp}$ of all realcompact spaces and their $z^{\sharp}$-irreducible maps if and only if X is a quasi-F space.

COCOMPACT F-BASES AND RELATION BETWEEN COVER AND COMPACTIFICATION

  • Lee, Sang-Deok;Kim, Chang-Il
    • The Pure and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.163-171
    • /
    • 1996
  • Observing that a locally weakly Lindel$\"{o}$f space is a quasi-F space if and only if it has an F-base, we show that every dense weakly Lindel$\"{o}$f subspace of an almost-p-space is C-embedded, every locally weakly Lindel$\"{o}$f space with a cocompact F-base is a locally compact and quasi-F space and that if Y is a dense weakly Lindel$\"{o}$f subspace of X which has a cocompact F-base, then $\beta$Y and X are homeomorphic. We also show that for any a separating nest generated intersection ring F on a space X, there is a separating nest generated intersection ring g on $\phi_{Y}^{-1}$(X) such that QF(w(X, F)) and ($\phi_{Y}^{-1}$(X),g) are homeomorphic and $\phi_{Y}_{x}$(g$^#$)=F$^#$.

  • PDF

F-CLOSED SPACES

  • Chae, Gyuihn;Lee, Dowon
    • Kyungpook Mathematical Journal
    • /
    • v.27 no.2
    • /
    • pp.127-134
    • /
    • 1987
  • The purpose of this paper is to introduce a topological space named an F-closed space. This space is properly contained between an S-closed space [17] and a quasi H-closed space [14], and between a nearly compact space [15] and a quasi H-closed space. We will investigate properties of F-closed spaces, and improve some results in [2], [7] and [17].

  • PDF

HEWITT REALCOMPACTIFICATIONS OF MINIMAL QUASI-F COVERS

  • Kim, Chang Il;Jung, Kap Hun
    • Korean Journal of Mathematics
    • /
    • v.10 no.1
    • /
    • pp.45-51
    • /
    • 2002
  • Observing that a realcompactification Y of a space X is Wallman if and only if for any non-empty zero-set Z in Y, $Z{\cap}Y{\neq}{\emptyset}$, we will show that for any pseudo-Lindel$\ddot{o}$f space X, the minimal quasi-F $QF({\upsilon}X)$ of ${\upsilon}X$ is Wallman and that if X is weakly Lindel$\ddot{o}$, then $QF({\upsilon}X)={\upsilon}QF(X)$.

  • PDF

GENERALIZED HYERS-ULAM STABILITY OF CUBIC TYPE FUNCTIONAL EQUATIONS IN NORMED SPACES

  • KIM, GWANG HUI;SHIN, HWAN-YONG
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.397-408
    • /
    • 2015
  • In this paper, we solve the Hyers-Ulam stability problem for the following cubic type functional equation $$f(rx+sy)+f(rx-sy)=rs^2f(x+y)+rs^2f(x-y)+2r(r^2-s^2)f(x)$$in quasi-Banach space and non-Archimedean space, where $r={\neq}{\pm}1,0$ and s are real numbers.

MINIMAL QUASI-F COVERS OF SOME EXTENSION

  • Kim, Chang Il;Jung, Kap Hun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.427-433
    • /
    • 2013
  • Observing that every Tychonoff space X has an extension $kX$ which is a weakly Lindel$\ddot{o}$f space and the minimal quasi-F cover $QF(kX)$ of $kX$ is a weakly Lindel$\ddot{o}$f, we show that ${\Phi}_{kX}:QF(kX){\rightarrow}kX$ is a $z^{\sharp}$-irreducible map and that $QF({\beta}X)=QF(kX)$. Using these, we prove that $QF(kX)=kQF(X)$ if and only if ${\Phi}^k_X:kQF(X){\rightarrow}kX$ is an onto map and ${\beta}QF(X)=(QF{\beta}X)$.

QUASI $O-z$-SPACES

  • Kim, Chang-Il
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.117-124
    • /
    • 1993
  • In this paper, we introduce a concept of quasi $O_{z}$ -spaces which generalizes that of $O_{z}$ -spaces. Indeed, a completely regular space X is a quasi $O_{z}$ -space if for any regular closed set A in X, there is a zero-set Z in X with A = c $l_{x}$ (in $t_{x}$ (Z)). We then show that X is a quasi $O_{z}$ -space iff every open subset of X is $Z^{#}$-embedded and that X is a quasi $O_{z}$ -spaces are left fitting with respect to covering maps. Observing that a quasi $O_{z}$ -space is an extremally disconnected iff it is a cloz-space, the minimal extremally disconnected cover, basically disconnected cover, quasi F-cover, and cloz-cover of a quasi $O_{z}$ -space X are all equivalent. Finally it is shown that a compactification Y of a quasi $O_{z}$ -space X is again a quasi $O_{z}$ -space iff X is $Z^{#}$-embedded in Y. For the terminology, we refer to [6].[6].

  • PDF

WALLMAN SUBLATTICES AND QUASI-F COVERS

  • Lee, BongJu;Kim, ChangIl
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.253-261
    • /
    • 2014
  • In this paper, we first will show that for any space X and any Wallman sublattice $\mathcal{A}$ of $\mathcal{R}(X)$ with $Z(X)^{\sharp}{\subseteq}\mathcal{A}$, (${\Phi}^{-1}_{\mathcal{A}}(X)$, ${\Phi}_{\mathcal{A}}$) is the minimal quasi-F cover of X if and only if (${\Phi}^{-1}_{\mathcal{A}}(X)$, ${\Phi}_{\mathcal{A}}$) is a quasi-F cover of X and $\mathcal{A}{\subseteq}\mathcal{Q}_X$. Using this, if X is a locally weakly Lindel$\ddot{o}$f space, the set {$\mathcal{A}|\mathcal{A}$ is a Wallman sublattice of $\mathcal{R}(X)$ with $Z(X)^{\sharp}{\subseteq}\mathcal{A}$ and ${\Phi}^{-1}_{\mathcal{A}}(X)$ is the minimal quasi-F cover of X}, when partially ordered by inclusion, has the minimal element $Z(X)^{\sharp}$ and the maximal element $\mathcal{Q}_X$. Finally, we will show that any Wallman sublattice $\mathcal{A}$ of $\mathcal{R}(X)$ with $Z(X)^{\sharp}{\subseteq}\mathcal{A}{\subseteq}\mathcal{Q}_X$, ${\Phi}_{\mathcal{A}_X}:{\Phi}^{-1}_{\mathcal{A}}(X){\rightarrow}X$ is $z^{\sharp}$-irreducible if and only if $\mathcal{A}=\mathcal{Q}_X$.