DOI QR코드

DOI QR Code

GENERALIZED HYERS-ULAM STABILITY OF CUBIC TYPE FUNCTIONAL EQUATIONS IN NORMED SPACES

  • Received : 2015.04.20
  • Accepted : 2015.06.25
  • Published : 2015.08.15

Abstract

In this paper, we solve the Hyers-Ulam stability problem for the following cubic type functional equation $$f(rx+sy)+f(rx-sy)=rs^2f(x+y)+rs^2f(x-y)+2r(r^2-s^2)f(x)$$in quasi-Banach space and non-Archimedean space, where $r={\neq}{\pm}1,0$ and s are real numbers.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, (1989), Doi:10.1017/CBO9781139086578.
  2. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2, no. 1-2 (1950), 64-66, Doi:10.2969/jmsj/00210064.
  3. Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, American Mathematical Society, 2000.
  4. D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223-237, Doi:10.1090/S0002-9904-1951-09511-7.
  5. Y-J. Cho, Th. M. Rassias, and R. Saadati, Stability of Functional Equations in Random Normed Spaces, Springer Optimization and Its Applications 86, Springer, (2013), Doi:10.1007/978-1-4614-8477-6.
  6. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Bull. Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64, Doi:10.1007/BF02941618.
  7. S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Florida, 2003.
  8. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  9. F. Q. Gouvea, p-adic Numbers, Springer-Verlag, Berlin, 1997, Doi:10.1007/978-3-642-59058-04.
  10. K. Hensel, Uber eine neue Begrndung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein 6 (1987), 83-88.
  11. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224, Doi:10.1073/pnas.27.4.222.
  12. K. W. Jun and H. M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867-878. https://doi.org/10.1016/S0022-247X(02)00415-8
  13. S-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications, USA, 2011, Doi:10.1007/978-1-4419-9637-4.
  14. K.-W. Jun and H.-M. Kim, On the stability of Euler-Lagrange type cubic mappings in quasi-Banach spaces, J. Math. Anal. Appl. 332 (2006), no. 2, 1335-1350, Doi:10.1016/j.jmaa.2006.11.024.
  15. H. Khodaei and Th. M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. 1 (2010), 22-41.
  16. M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Brazilian Math. Soc. 37 (2006), 361-376, Doi:10.1007/s00574-006-0016-z.
  17. A. Najati, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, Turk. J. Math. 31 (2007), 395-408
  18. C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math. 132 (2008), no. 2, 87-96, Doi:10.1016/j.bulsci.2006.07.004.
  19. J.M. Rassias, Solution of the Ulam stability problem for cubic mappings, Glasnik Matem. 36 (2001), 63-72.
  20. Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003, Doi:10.1007/978-94-017-0225-6.
  21. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300, Doi:10.1090/S0002-9939-1978-0507327-1.
  22. A. M. Robert, A Course in p-adic Analysis, Springer-Verlag, New-York, 2000, Doi:10.1007/978-1-4757-3254-2.
  23. S. Rolewicz, Metric linear spaces, Second edition. PWN-Polish Scientific Publishers, Warsaw:D. Reidel Publishing Co. Dordrecht, (1984).
  24. F. Skof, Local properties and approximations of operators, Rend. Sem. Math. Fis. Milano 53 (1983), 113-129. https://doi.org/10.1007/BF02924890
  25. J. Tabor, Stability of the Cauchy functional equation in quasi-Banach spaces, Ann. Polon. Math. 83 (2004), 243-255, Doi:10.4064/ap83-3-6.
  26. S. M. Ulam, Problems in Modern Mathematics, Chapter 6, Wiley Interscience, New York, 1964.