• Title/Summary/Keyword: Quadratic form

Search Result 273, Processing Time 0.031 seconds

Modeling and Identification of Human Mind using a Robot Which Walks Together

  • Kwon, Oh-Kyu;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.161.2-161
    • /
    • 2001
  • To achieve a cooperative work between human and robot, it is thought helpful to estimate the states of human mind, which originates his behavior. In this paper, human mind was considered to modify instinctive desires according to the conditions of external world surrounding the instinct. A simple human mind model was designed so that it finds a balance between instinctive desire and restriction from the external world. The external world is divided into three sub-worlds like subject´s whole body, its partner and concerned periphery. Proposed mind model has three-layers construction. Each of the layer tries to find a balance between desire and restriction from external world. In each layer, the role of finding the balance was expressed by an identical optimal control minimizing a performance index function of quadratic form with a weight factor, which is rearranged and named ...

  • PDF

A Constrained Receding Horizon Estimator with FIR Structures

  • Kim, Pyung-Soo;Lee, Young-Sam
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.289-292
    • /
    • 2001
  • This paper concerns with a receding horizon estimator (RHE) for discrete-time linear systems subject to constraints on the estimate. In solving the optimization for every horizons, the past all measurement data outside the horizon is discarded and thus the arrival cost is not considered. The RHE in the current work is a finite impulse response (FIR) structure which has some good inherent properties. The proposed RHE can be represented in the simple matrix form for the unconstrained case. Various numerical examples demonstrate how including constraints in the RHE can improve estimation performance. Especially, in the application to the unknown input estimation, it will be shown how the FIR structure in the RHE can improve the estimation speed.

  • PDF

STOCHASTIC SINGLE MACHINE SCHEDULING WITH WEIGHTED QUADRATIC EARLY-TARDY PENALTIES

  • Zhao, Chuan-Li;Tang, Heng-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.889-900
    • /
    • 2008
  • The problem of scheduling n jobs on a single machine is considered when the machine is subject to stochastic breakdowns. The objective is to minimize the weighted squared deviation of job completion times from a common due date. Two versions of the problem are addressed. In the first one the common due date is a given constant, whereas in the second one the common due date is a decision variable. In each case, a general form of deterministic equivalent of the stochastic scheduling problem is obtained when the counting process N(t) related to the machine uptimes is a Poisson process. It is proved that an optimal schedule must be V-shaped in terms of weighted processing time when the agreeable weight condition is satisfied. Based on the V-shape property, two dynamic programming algorithms are proposed to solve both versions of the problem.

  • PDF

A Study on Hovering Flight Control for a Model Helicopter (모형 헬리콥터 정지비행제어에 관한 연구)

  • 심현철;이은호;이교일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1399-1411
    • /
    • 1994
  • A model helicopter has more versatile flight capability than the fixed-wing aircraft and it can be used as an unmaned vehicle in hazardous area. A helicopter, similar to other aircrafts, is an unstable, multi-input multi-output nonlinear system exposed to strong disturbance. So it should be controlled by robust control theories that can be applied to multivariable systems. In this study, motion equations of hovering are established, linearized and transformed into a state equation form. Various parameters are measured and calculated in other to obtain the stability derivatives in the state equation. Hovering flight controller is designed using the digital LQG/LTR(Linear Quadratic Gaussian/Loop Transfer Recovery) control theory. The designed controller is tested by the nonlinear simulations and implemented on an IBM-PC/386. Experiments were carried out on a model helicopter attached to the 3-DOF gimbal. The designed controller showed satisfactory hovering capability to maintain the hovering for more than 40 seconds.

A Finite Element Formulation for the Inverse Estimation of an Isothermal Boundary in Two-Dimensional Slab (상단 등온조건을 갖는 이차원 슬랩에서의 경계위치 역추정을 위한 유한요소 정식화)

  • Kim, Sun-Kyoung;Hurh, Hoon;Lee, Woo-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.829-836
    • /
    • 2001
  • A dependable boundary reconstruction technique is proposed. The finite element method is used for the analysis of the direct heat conduction problem to realize the deformable grid system. An appropriate strategy for grid update is suggested. A complete sensitivity analysis is performed to obtain the derivatives required for restoration of the optimal boundary. With the result of the sensitivity analysis, the unknown boundary is sought using the sequential quadratic programming. The method is applied to reconstruction of boundaries with sinusoidal, step, and cavity form. The overall performance of the proposed method is examined by comparison between the estimated the exact boundaries.

Extension of Field-Consistency to Plane Strain Elements (일관장 개념의 평면변형률 요소에의 확장)

  • 김용우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1799-1809
    • /
    • 1995
  • The applicability of the field-consistency paradigm, which was originally employed for analysis of locking due to constrained energy having the second power of a strain, is extended to the constrained energy having a quadratic form of strain. For the extension, nearly-incompressible plane strain problem is considered by introducing the concept of reduced minimization. The field-consistent analysis of the plane strain problem leads to a clear and systematic understanding on the relation amongst constraints imposed on element, spurious constraint -free optimal points, and integration order used.

Design method of computer-generated controller for linear time-periodic systems

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.225-228
    • /
    • 1992
  • The purpose of this project is the presentation of new method for selection of a scalar control of linear time-periodic system. The approach has been proposed by Radziszewski and Zaleski [4] and utilizes the quadratic form of Lyapunov function. The system under consideration is assigned either in closed-loop state or in modal variables as in Calico, Wiesel [1]. The case of scalar control is considered, the gain matrix being assumed to be at worst periodic with the system period T, each element being represented by a Fourier series. As the optimal gain matrix we consider the matrix ensuring the minimum value of the larger real part of the two Poincare exponents of the system. The method, based on two-step optimization procedure, allows to find the approximate optimal gain matrix. At present state of art determination of the gain matrix for this case has been done by systematic numerical search procedure, at each step of which the Floquet solution must be found.

  • PDF

Iterative learning control of nonlinear systems with consideration on input magnitude (입력의 크기를 고려한 비선형 시스템의 반복학습 제어)

  • Choi, Chong-Ho;Jang, Tae-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.165-173
    • /
    • 1996
  • It is not desirable to have too large control input in control systems, because there are usually a limitation for the input magnitude and cost for the input energy. Previous papers in the iterative learning control did not considered on these points. In this paper, an iterative learning control method is proposed for a class of nonlinear systems with consideration on input magnitude by adopting a concept of cost function consisting of the output error and the input magnitude in quadratic form. We proposed a new input update law with an input penalty function. If we choose a reasonable input penalty function, the two control objectives, good command following and small input energy, can be achieved. The characteristics of the proposed method are shown in the simulation examples.

  • PDF

Estimators Shrinking towards Projection Vector for Multivariate Normal Mean Vector under the Norm with a Known Interval

  • Baek, Hoh Yoo
    • Journal of Integrative Natural Science
    • /
    • v.11 no.3
    • /
    • pp.154-160
    • /
    • 2018
  • Consider the problem of estimating a $p{\times}1$ mean vector ${\theta}(p-r{\geq}3)$, r = rank(K) with a projection matrix K under the quadratic loss, based on a sample $Y_1$, $Y_2$, ${\cdots}$, $Y_n$. In this paper a James-Stein type estimator with shrinkage form is given when it's variance distribution is specified and when the norm ${\parallel}{\theta}-K{\theta}{\parallel}$ is constrain, where K is an idempotent and symmetric matrix and rank(K) = r. It is characterized a minimal complete class of James-Stein type estimators in this case. And the subclass of James-Stein type estimators that dominate the sample mean is derived.

Deflection Analysis of Flexural Composite Members Considering Early-Age Concrete Properties (콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 재령종속적 처짐해석)

  • 성원진;김정현;윤성욱;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.427-432
    • /
    • 2003
  • An analytical method to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The sectional analysis calculates the axial and curvature strains based on the force and moment equilibriums. The deflection curve of the box girder approximated by the quadratic polynomial function is calculated by applying to the proper boundary conditions in the consecutive segments. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The one dimensional finite element analysis results are compared with those of the three dimensional finite element analysis and the analytical method based on the sectional analysis. Close agreement is observed among the three methods.

  • PDF