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A Constrained Receding Horizon Estimator with FIR Structures

Pyung Soo Kim and Young Sam Lee

Abstract: This paper concerns with a receding horizon estimator (RHE) for discrete-time linear systems subject to constraints on the
estimate. In solving the optimization for every horizons, the past all measurement data outside the horizon is discarded and thus the
arrival cost is not considered. The RHE in the current work is a finite impulse response (FIR) structure which has some good inherent
properties. The proposed RHE can be represented in the simple matrix form for the unconstrained case. Various numerical examples
demonstrate how including constraints in the RHE can improve estimation performance. Especially, in the application to the unknown
input estimation, it will be shown how the FIR structure in the RHE can improve the estimation speed.
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L Introduction

The Kalman filter has been an important tool for the last thirty
years, not only for control system design, but also for many
other fields of engineering and applied science [1]. Often ad-
ditional insight about the system is available in the form of in-
equality constraints. However, with the addition of the inequal-
ity constraints, general recursive solutions such as the Kalman
filter are unavailable.

Although there exists a vase literature addressing estimation,
relatively little work has been carried out for systems in which
the estimated variables must satisfy a priori constraints. If the
data are processed in batch fashion, inequality constraints can
be eastly be incorporated within least squares estimation using
a quadratic programming. However, the problem size grows
with time as more data becomes available. Thus, its on-line
application might be limited. To make the estimation problem
tractable. a receding or a moving horizon formulation has been
proposed where the least squares optimization is performed
over a fixed length horizon to bound the size of the quadratic
program [2] [3]. The obtained estimator will be called the re-
ceding horizon estimator (RHE). In the existing RHE [2] (3],
to summarize compactly the effect of the past all measurement
data outside the horizon, the arrival cost has been considered
in the optimization. That is, the past data outside the horizon
affects the optimization in the current horizon. Therefore, al-
though this RHE can incorporate inequality constraints, it still
has an infinite impulse response (IIR) structure. It has been a
general rule of thumb that the IIR structure filter such as the
Kalman filter is often sensitive against temporarily uncertain
modeling errors or numerical errors [4]-[6].

In this paper, an alternative RHE will be investigated for
discrete-time linear systems with inequality constraints. This
estimator will have a finite impulse response (FIR) structure
which utilizes only the finite measurement data on the most
recent horizon. The FIR structure in filters has been adopted
due to its inherent properties such as a bounded input/bounded
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output (BIBO) stability, robustness for temporary modeling un-
certainties and numerical errors {4]-16]. To be an FIR structure,
in solving the optimization, only the finite measurement data on
the horizon is utilized while the past all measurement data out-
side the horizon 1s discarded. That is, the arrival cost term is not
considered by taking the covariance matrix of the horizon initial
state as infinity. This means that the horizon initial state is as-
sumed to be unknown when solving the optimization for every
horizons. It is shown that the proposed RHE can be represented
in the simple matrix form for the unconstrained case. Various
numerical examples demonstrate how including constraints in
the RHE can improve estimation performance. Especially, in
the application to the unknown input estimation on a continu-
ous stirred tank reactor (CSTR) model, it will be shown how
the FIR structure in the RHE can improve the tracking speed.

I1. Problem statements
Consider a linear discrete time-invariant state-space model:

Thgr = Ay + Guy,  ye = Caw + v (1

where 1, € R" is the state vector and yx € R is the mea-
sured output vector, respectively. The initial state xy,, is a ran-
dom variable with a mean ¥, and a covariance I1,,. The noise
terms wy € R” and v, € RY are random variables with zero
mean and covariances () and R respectively, and mutually un-
correlated. The random variable wy, typically models unmea-
sured disturbances and model inaccuracies, while the random
variable vy is measurement noise. There two variables are un-
correlated with &y, .

Although forming an accurate probabilistic model for the un-
known variables such as states .z and disturbances w;, is diffi-
cult, an engineer will usually have knowledge about the range
of values that they can assume. This knowledge can be formed
as inequality consraints as follows:

>

wy € W {w : Dw < d},

>

ry € X {x: Hx < h} (2)

where D € R" X" H ¢ R"*" d € R™ and h € R"r.
The capability to incorporate above constraints on the estimated
variables have lead to better estimates [2] [3]. When optimiza-
tion software such as quadratic programming or nonlinear pro-
gramming is used to solve the least squares problem, inequality
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constraints (2) can be placed on the unknown variables. This is
useful form an engineering viewpoint since the prior knowledge
of the process is often in the form of inequalities. For instance.
variables such as temperature, pressure, flow rates, concentra-
tions, etc. must be nonnegative and cannot go above some upper
bound. In addition, the rate-of-change of these variables is also
bounded by mass and energy balance considerations.

Although the quadratic programming can incorporate in-
equality constraints of (2), its on-line application is limited
since the size of the problem grows as more data become avail-
able. Thus, for a fixed dimension quadratic program, a receding
or moving horizon formulation can be a strategy [2] [3]. That
is, for the current time k, the optimization problem on the in-
terval [ko, k] with varied horizon length k — ko is reformulated
on the most recent horizon [k — N, k] with fixed horizon length

N. For compactness, ky 2 k — N shall be written hereafter.
In the current paper, the estimator with a receding or moving
horizon strategy will be called the receding horizon estimator
(RHE). However, in the existing RHE [2] [3], due to the arrival
cost term which compactly summarizes the effect of the past all
measurement data outside the horizon, the RHE is an infinite
impulse response (IIR) structure which utilizes all of the avail-
able measurement data. It has been a general rule of thumb that
the TIR structure filter such as the Kalman filter is often sensi-
tive against temporarily uncertain modeling errors or numerical
errors [4]-[6].

. Constrained RHE with FIR structure

In this section, the RHE with an FIR structure will be investi-
gated subject to constraints on the estimate. To be an FIR struc-
ture, in solving the optimization on the current horizon [kx, k],
only the finite measurement data on the horizon is utilized while
the past all measurement data outside the horizon is discarded.
This means that the arrival cost term in [2] [3] will not be con-
sidered in optimization to obtain the optimal state and distur-
bance estimates.

On the most recent horizon[ky, k|, the system (1) will be
represented in a batch form that the finite measurement data
is expressed in terms of the state x, at the current time k as

follows:
Yio1 = Onze+GNWio1+ Vi
A~ A Tk
[Cn GN] [ Wios }4—Vk 1 3)
where Vi 2 [yl -yl [T Wit 2 [l - wi_ )",
Vioi 2 [l - vi_1]" and Cn, G are obtained from
CA™N
(jAfN-Fl
Cn £
cA~t
CAT'G CATG CA NG
N 0 CA™'G cA YT G
G = -
0 0 CA™IG

On the horizon [kn, k] for the current time k, the receding
horizon estimator (RHE) is obtained from the solution of the

following quadratic program

* .
Jn = man.
Tpipe— 1 W1

IN(Ti—1, Wi-1)

subject to (1) and inequality constraints (2) where

In(Zph-1s We1)

[ v [6n 6y { o }
= Vi1
L Wiy
- = -1
Ry 0 ]
L 0 @y
i = ~ Thlk—1
Vit = [Cn Gn] { VV‘;;,l } @
L Wi
with weighting matrices given by Ry 2 [diag(Q --- Q)] and

On = [diag(R - - R)]. Then, on the most recent horizon

[k, k], the optimal state and disturbance estimates are denoted
at time k by Zy,_ and W’k,l given measurement data Y _;.
In particular, if

(Zxik—1s Wio1) € arg min  JN(Zpy, Weot1),

gy Wiag
then the RHE 44, denotes the solution to (4) at time k.

The obtained RHE &, has the FIR structure since only
the finite measurement data Yz on the most recent horizon
[kn, k] is utilized. The FIR structure in filters has known to be
built in a bounded input/bounded output (BIBO) stability and to
be robust against temporarily uncertain model parameters [4]-
[6]. Therefore, the RHE with FIR structure might have above
inherent properties of the FIR structure filter. In the system for
detecting a signal with unknown time of occurrence, it is well
known that increasing of measurements for a detection deci-
sion will increase the time to detection, i.e., an increase in a
delay from the time unknown signal first appears would be ap-
propriate for quick detection of signals with unknown times of
occurrence, which will be shown via a real application in the
following section.

Note that the proposed RHE with FIR structure can be repre-
sented in a simple matrix form when there are no constraints as

follows:
D 0, Tt 3 SV
Lk k-1 GLRY'Cy GNRL'GN + QY
CLRW Wi s, )

which is obtained easily from the the minimization of (4).

IV. Numerical examples
1. Simple example of inequality constraints
To illustrate the validity of the constrained estimation, simple
numerical example is implemented on a following discrete-time
linear system:

Th41

—0.1949 0.3815 0.1949
ye = [ 1 =3 jax+u

0.9962  0.1949 } I: 0.03393 ]
Lk k>

where v is zero mean and normally distributed random vari-
. B 2 .
able with covariance 0.01°, and w = |zx| where z is zero
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mean and normally distributed random variable with covariance
0.1%. The initial state o is normally distributed with zero mean
and covariance equal to the identity. The constrained estimation
problem is formulated with Q = 0.1%, R = 0.01% and N = 10.
To capture our knowledge of the random variable wy, the in-
equality constraints wy > 0 is enforced. Four estimators are
compared. The first is unconstrained RHE with IIR structure,
which is the Kalman filter [3]. The second is the constrained
RHE with IIR structure {3]. The third is the unconstrained RHE
with FIR structure, which is given by (5). Finally, fourth is the
constrained RHE with FIR structure, which is the main result of
this paper. The result is shown in Fig. 1. As expected, the per-
formance of two constrained RHESs are superior to other two un-
constrained RHEs, since they possess more information regard-
ing the random variable in the form of equality constraints. It is
remarkable that the constrained RHE with FIR structure shows
similar performance to the constrained RHE with IIR structure,
although the arrival cost is not considered in optimization.

2. Application to unknown input estimation

To show the useful application of the constrained RHE with
FIR structure, the problem of an unknown input estimation is
considered. The unknown input estimation has been applied
to many engineering problems [7] {8]. It has been shown that
the unknown input estimation using the FIR structure filter can
provide quicker estimation than the approach using IIR filter
such as the Kalman filter [8]. In this section, the application
of the unknown input estimation demonstrates how including
constraints in the RHE can improve estimation performance. In
addition, it will be shown how the FIR structure in the RHE can
improve the tracking speed.

The unknown input estimation using the constrained RHE
with FIR structure is performed for a continuous stirred tank
reactor (CSTR). The unknown input vector with a random-walk
type is treated as auxiliary state. Then, the CSTR system can be
augmented as the following fourth order system:

0.9534 3.5868 —2.4413 0.0449
0.0015 0.6152  0.0354  (.0000

Thr = 0 0 1.0000 0 ok
0 0 0 1.0000
00622 0 0
0.0010 0 0
0 0.0500 Wi
0 0 0.0500
S I B ©
Yoo = 19 1 o0 1 |TRTS

with inequality constraints which should be enforced include:
—u2 < 0.051, x2 < (1 -0.051).
r3 <0, 24 <0, —a3<0.5. @)

In the augmented state zx = [x1 x2 23 x4] , the original state
term is [z 2] where 2 is the change in the reactor temperature
and x5 is the change in the mole fraction of original chemical
species, and the unknown input term is [r3 z.4] where x5 corre-
sponds to the clogging of the inlet pipe and x4 is related to the
heat transfer fluid.

Objective is to obtain the unknown input estimate [ i4)"
as well as the state estimate [, #2]7 subject to (6) and the in-
equality constraints (7). The first two express the requirement
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Fig. 1. Comparison of four estimators.

that the mole fraction of original chemical species is in the in-
terval [0, 1]. The next two constraints imply that the inlet flow
rate and the temperature of heat transfer fluid can only decrease
from their nominal values. The last constraint implies that the
decrease of the inlet flow rate must be bounded.
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Fig. 2. RHEs with IIR structure.
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Fig. 3. RHEs with FIR structure.
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The first unknown input is a step type with 0.3 decrease at
k = 100 and the second one is also a step type with 0.5 de-
grees at k& = 200. Fig. 2 and 3 show estimates for the second
unknown input. Two unconstrained RHEs violate the negativity
constraint in some instances. However, two constrained RHEs
satisfy the negativity constraints, since they possess more infor-
mation regarding unknown inputs in the form of equality con-
straints. It is remarkable that the RHEs with an FIR structure
shown in Fig. 3 shows superior fast tracking performance to
other two estimators with IIR structure shown in Fig. 2, which
indicates the finite convergence time and the fast tracking ability
the FIR structure filters. Therefore, in the viewpoint of both sat-
isfying constraints and fast tracking, the constrained RHE with
FIR structure will be useful for the problem of the unknown
input estimation.

V. Concluding Remarks

This paper has concerned with an RHE with discrete-time
linear systems subject to constraints on the estimate. In solv-
ing the optimization for every horizons, the measurement data
outside the horizon is discarded and thus the arrival cost is not
considered. The RHE is the FIR structure which has some good
inherent properties. The proposed RHE can be represented in
the simple matrix form for the unconstrained case. Via various
numerical examples, it is shown how including constraints in
the RHE can improve estimation performance. Especially, it is
shown how the FIR structure in the RHE can improve the esti-

mation speed in the application to the unknown input estimation
on the CSTR model.
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