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STOCHASTIC SINGLE MACHINE SCHEDULING WITH
WEIGHTED QUADRATIC EARLY-TARDY PENALTIES

CHUAN-LI ZHAO* AND HENG-YONG TANG

ABSTRACT. The problem of schedulingn jobs on a single machine is consid-
ered when the machine is subject to stochastic breakdowns, The objective
is to minimize the weighted squared deviation of job completion times from
a common due date. Two versions of the problem are addressed. In the
first one the common due date is a given constant,whereas in the second
one the common due date is a decision variable. In each case, a general
form of deterministic equivalent of the stochastic scheduling problem is ob-
tained when the counting process N(t) related to the machine uptimes is a
Poisson process. It is proved that an optimal schedule must be V-shaped
in terms of weighted processing time when the agreeable weight condition
is satisfied. Based on the V-shape property, two dynamic programming
algorithms are proposed to solve both versions of the problem.
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1. Introduction

Scheduling problems involving quadratic early-tardy penalties have received
increasing attention in recent years. A number of results have been published in
the literature[6,8]. This model corresponds to the situations where only small de-
viation of the job completion times from due date are acceptable. The problem is
to determine a sequence so that the weighted sum of squared deviation(WSSD)
of the job completion times about a common due date is minimized. In gen-
eral, the WSSD problem involves arbitrary processing times and weights (If jobs
have equal weights it is SSD problem). There are two versions of the problem,
constrained problem and unconstrained problem. In the constrained problem
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the common due date is given, whereas in the unconstrained problem the com-
mon due date is a decision variable. Bagchi et al.[2] proposed the enumerative
procedures for both versions of the WSSD problem. For the unconstrained
WSSD problem,it is not hard to show that the optimal due date for any given
sequence is equal to the mean completion time. Therefore the unconstrained
WMSD problem is equivalent to the problem of minimizing weighted comple-
tion time variance(WCTV). Cai[3] considered WCTV problem where the jobs
satisfy the agreeable weight condition. They showed that an optimal sequence
must be V-shaped in terms of weighted processing time and presented two dy-
namic programming algorithms. Merten and Muller[12] propose two special
cases of the constrained WCTV problem,one with equal weights and the other
with equal processing times.They indicated that the characters of the optimal
sequence were not obvious even in these special cases. The case with equal
weights (CTV) have received extensive studies. Schrage[l4]examines the opti-
mal sequence for the CTV problem and gives a conjecture about the nature of
optimal sequences. Kubiak[10] proved that the CTV problem is NP-hard. Gupta
et al.[9] propose a heuristic procedure based on genetic algorithm. De et al.[7]
and Kubiak [11]present pseudopolynomial dynamic programming algorithms for
the CTV problem. Cai[4] extended the CTV problem to the case where the
processing times are random variables. A sufficient condition is derived under
which optimal sequences are V-shaped.

Most studies on the WSSD(WCTV) problem mentioned above are concerned
with the case where the machine is continuously available for processing. How-
ever, there are many situations where the machine may be subject to unpre-
dictable breakdowns.

Birge et al[l] considered the single machine problem with breakdowns and
regular objective function. They provide a description of the stochastic break-
downs problem. Mittenthal and Raghavachari[13] studied the SSD problem with
deterministic processing times and machine subject to stochastic breakdowns.
When the counting process related to the machine uptimes is a generalized Pois-
son process, several properties of optimal sequences,such as V-shaped property,
are derived for both versions of the problem. Cai and Tu [5)extended the model
of Mittenthal and Raghavachari to the case where the processing times are ran-
dom variables. A sufficient condition is derived under which optimal sequences
are V-shaped.

The present work is motivated by the contributions of Mittenthal and Raghav-
achari[13] and Caif3]. In[13] Mittenthal and Raghavachari considered the SSD
problem, in which the machine is subject to stochastic breakdowns. Cai[3] stud-
ied the WCTV problem where the jobs satisfy the agreeable weight condition
and machine without breakdowns. In this paper, we consider WSSD problem
in which machine subject to stochastic breakdowns. We first develop the deter-
ministic equivalent of the two versions of the stochastic problem. We then show
that an optimal schedule must be V-shaped in terms of weighted processing time
when the jobs have agreeable processing times. Based on the V-shaped property,
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two dynamic programming algorithms with pseudopolynomial time complexity
are proposed.

2. Problem description

There are given a single machine and a set of n independent jobs immediately
available for processing at time 0. Job J; requires a positive integer processing
time p; and is assigned a positive integer weight w;. We denote Y ;. p; and
Yoo wj by P and W, respectively.

The breakdowns of the machine is denoted by a sequence of nonnegative
vectors {U;, D;}$2, with U; representing the duration of the sth machine uptime
and D; the duration of the ith machine downtime. Assume that the uptimes
are independent of the downtimes and that the downtimes are independent and
have the same mean y = E[D;] < 00, and same ¢ = E[D?] < oo, for all i > 1.

For the random sequence {U;}$2,;,we define a counting process{N(t),t > 0}
by

N(t) =sup{k > 0,5, < t},

where S, =Y. Uj,n > 1, and Sp = 0.

In this paper, we are concerned with a preempt — resume model,i.e., if a
breakdown occurs during the processing of a job, the work done on the job
prior to the breakdown is not lost, and the processing of the disrupted job can
be continued from where it was interrupted as soon as the machine becomes
operable.

We also assume that the start time of the first job is zero and jobs are con-
tinuously processed.

For a given sequence 7 = [J1,Ja,. .., Jy], the actual completion time of job
Jj,denoted by R;, is a random variable that can be expressed as

N(Cy)
Rj :Cj+ Z Di,

i=1

where C; = Z'Zzl ;-
We will consider the following two problems:

2.1. Constrained problem. Given a common due date d,determine the job
sequence m to minimize

F(m) = E[i‘;wj(Rj - d)2}
iz

2.2. Unconstrained problem. Determine the job sequence 7 and the common
due date d, to minimize

F(r)=E [iw,-(Rj = d)2] :

j=1
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We consider the case where the N(t) is a Poisson process. If N(t) is a Poisson
process, then E[N(t)] = at, Var[N(t)] = at for some a > 0.
We now establish the deterministic equivalent of the objective function.
From [13}, E[(R; — d;)?] = [(1 + pa)C; — d]? + aoC}, therefore, we have
Theorem 1. If N(t) is a Poisson process, the objective of the constrained
problem is equivalent to

F(n) = Zn:wj(aCj _d)2+ﬂinCj, (2.1)
j=1 =1

where o = 1+ pa and 8 = ao.

For the unconstrained problem, the common due date d is a decision variable.
We first determine the optimal common due date d.
Taking derivative of F(7) with respect to d,we get

OF(r) &
—a-&— = ;w](—Z)(aCJ - d)
Let
OF(m) 0
ad
then
d* =aC,

where C = 3 377 w;C; is the mean weighted completion time of sequence 7.
Note that C is sequence dependent.

Theorem 2. If N(t) is a Poisson process, the objective of the unconstrained
problem is equivalent to

F(’JT)=a2ZWj(Cj—é)2+ﬁzijj, (2.2)

j=1 i=1
where a = 1 + pa and § = ac.

3. V-shape property

Definition 1. The jobs are said satisfy the agreeable weight condition if p; < p;
implies w; > w; for all 1 <¢,5 < n.

A sequence is said to be V-shaped in terms of (weighted) processing times if
the jobs before and after the job with the smallest (weighted) processing time
are,respectively, in non-increasing and non-decreasing order of (weighted) pro-
cessing times. For the equal weight problem, Mittenthal and Raghavachari[13]show
that the optimal sequence possesses a V-shaped structure in terms of processing
times. We now show that, provided that some condition is satisfied, an optimal
sequence for a problem with job-dependent weights also possesses a V-shaped
structure in terms of weighted processing times.
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Theorem 3. For the constrained problem, the optimal sequence that minimizes
F(m) must be V-shaped in terms of weighted processing time p;/w;,if the agree-
able weight condition is satisfied.

Proof. From (1),

n

F(r) = Y w;(aC; —d)2+ﬁ§:chj

j=1 j=1
n n n
= ()52 Z’u}]Cf =+ (,B — 2ad) Z’ijj + d2 Z’U)j,
j=1 Jj=1 i=1

since d? Z?=1 wj is a constant independent of sequence, so the objective is equiv-
alent to

([ n
Fi(n) = a? X:ij’J2 + (8 — 2ad) ijCj.
Jj=1 Jj=1
(1) (8- 2ad) > 0.

If (8 — 2ad) > 0, then the optimal sequence can be obtained by sequencing
jobs in nondecreasing order of weighted processing time(WSPT rule).

Suppose an optimal sequence 7 is not WSPT, then there are two consecutive
jobs J; and Jj such that p;/w; > px/wg. It implies that p; > py and w; < wg.
Let m; be the sequence obtained by interchange J; and Jy. We denote the
completion time of job J; under m; by Ci(m).

It is obvious that

Cj(m1) = Cj + px, Ck(m1) = Cr — p;.
Suppose under 7 the starting time of J; is t, then

Fy(m) — Fi(m)
= [@®(2t +p; +pr) + (8 — 20d))(wipk — wiD;) + o*pipr(w; — wy)
< 0
This contradicts the optimality of 7. Hence the optimal sequence must satisfy
WSPT rule, and WSPT sequence is a spacial case of the V-shaped.
(2) (B —2ad) < 0.
If (B — 2ad) < 0, the objective is equivalent to

Fy(m) =Y w;(C; - d)%, (3.1)
j=1

where d = Zoé—i—}é.

Suppose an optimal sequence 7 is not V-shaped, then there are three con-
secutive jobs J;, J; and Jy such that p;/w; > pi/w; and pj/w; > pr/wk. It
implies that p; > p; and p; > pi, w; < w; and w; < wi. Let 7 be the se-
quence obtained by interchange J; and J;, and 72 be the sequence obtained by
interchange J; and J;. We denote the completion time of job J; in under 7, by
Ci(mi)(k = 1,2).
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It is obvious that
Ci(m1) = Ci + pj, Cj(m1) = Cj — p;, Cr(m1) = Ch;

Ci(ma) = Cy, Cj(ma) = Cj + pi, Ci(m2) = C — p;.
By direct calculation, we get

Fy(m) = Fa(r) = (2C; — 2d+ p;)(wip; — wips) — pw; (pj — pi).-

Fy(my) — Fa(m) = (2C; — 2d + pi)(w;pk — wip;) — pjwi(pe — pj)
= (2C; — 2d + p;)(w;pr — wip;)
+  pe{w;pk — wip;) + pipk(w; — wg).
If (2C; —2d+p;) < 0, then Fy(m;)— Fy(m) < 0. Otherwise, if (2C; —2d+p;) > 0,
then Fy(mg) — Fp(m) < 0. It is implies that either Fy(m) < Fa(m) or Fa(ma) <
Fy(r), this contradicts the optimality of # and proves the theorem. O

Similar to that of the constrained case, the unconstrained problem also pos-
sesses a V-shaped structure.

Theorem 4. For the unconstrained problem, the optimal sequence that mini-
mizes F(m) must be V-shaped in terms of weighted processing time p;/w;, if the
agreeable weight condition is satisfied.

Proof. The proof is similar to that of the constrained case. Suppose an optimal
sequence 7 is not V-shaped, then there are three consecutive jobs J;, J; and Ji
such that p;/w; > p;/w; and pj/w; > pg/wg. It is implies that p; > p; and
Pj > Pk, wj < w; and w; < wg. Let 1 be the sequence obtained by interchange
J; and Jj, and w5 be the sequence obtained by interchange J; and J,. We denote
the completion time of job J; in under 7y by Ci(mg)(k = 1,2).

It is obvious that

Ci(m1) = Ci + p;, Cj(m1) = C; — ps, Cr(m1) = Ch;
Ci(m1) = Ci, Cj(m2) = Cj + px, Cr(ma) = Cy — pj.

_ _ 1
Clm) = C-Ay0 = W(wjpi — Wipj),

_ ~ 1
C(m) = C—D2, M= W(wkpj — W;Pk)-

By direct calculation, we get
F(m)~F(r) = o*[-WA}— (w;p? — wzp?)
- 2(Ci—pi—C+ 2%)(%‘2%‘ — w;p;) — 2pip;(w; — w;)]
= o?[-WAL ~ (w;p] — wip})
- 2Cj—p;-C+ %)(wjpi — wp;)
= 2pipj(wj — wi) + 2pi(wips — wip;))-
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F(m) - F(m) = o®[-WA]~ (wp] —w;p})
~, B
= 205 —ps = O+ 5—3)(wkps — wipk) — 2pipr(wy ~ w5)]-

Noting (w;p; —w;p;) < 0 and (wgp; —w;px) > 0, so we have: if (C;—C'+455) <
% then

1
02{—WA% - ("UJ'I)? - wz’P?) - 2(—§Pj)(wjpz' — Wwip;)
2pip; (w; — wi) + 2pi{w;p;i — wip;]
= o*[-WA? — pw;(p; — pi)] < 0.

F(m) — F(n)

IA

If (C; ~ C + 525) > % then
F(m) - F(r) < o*[-WA] -~ (wxp} — wip})

1
— 2(.__2_pj)(wkpj — w;pk) — 2pjpr(Wk — w;)]

= o*[~-WAS - pi(wip; — wipk) — pipr(wr — wy)] < 0.

It implies that either Fy(m;) < Fa(m) or Fy(ma) < Fy(w), this contradicts the
optimality of = and proves the theorem. O

The structure of optimal sequences of the general case is still not clear if
no condition is imposed on the problem parameters. The V-shape property,
however, does not hold universally even there are not machine breakdowns.
Examples are as follows.

Example 1. Consider constrained problem: n = 3,p; = 5,p2 = 2,p3 = 4;
wy = 10,’!1)2 = 3, w3 = 4,d =T7.4.

The optimal schedule is 7 = [J1, J3, Ja| (the corresponding objective value is
106.72), which is not V-shaped.

Example 2 ([3]). Consider unconstrained problem: n = 3,p; = 10000, p2 =
2, p3 = Qw; = 20000, wy = 3, w3 =9.

The optimal schedule is 7 = [J1, J3, Jo| (the corresponding objective value is
0.0545), which is not V-shaped.

4. Algorithms

In [3], based on the V-shape property of the optimal sequence, Cai proposed a
dynamic programming algorithm of the WCTV problem. Along the lines of Cai,
we will propose two dynamic programming algorithms to solve both versions of
the WSSD problem.

We first consider constrained problem. From the proof of Theorem 3, if
(8 — 2ad) > 0, then the optimal sequence can be obtained by sequencing jobs
in nondecreasing order of weighted processing time. In the following, we assume
that (f—2ad) < 0. Let II be the set of V-shaped sequences . Given a d,we want
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to find 7* € I that minimizes
n

Fy(m) =y w;(C; —d)?,
j=1

From the V-shape property, job Js must be either immediately prior to job Ji
or immediately after job Ji; job J3 must be either immediately prior to jobs J;
and J; or immediately after jobs J; and Jy and so on. General, for any given set
N ={J,Ja,..., Ji}(i =1,2,...,n), job J; must be either the first or the last
in an optimal sequence for the jobs in Aj;. Suppose m; be the optimal sequence
for the jobs in N;. It is a subsequence of the optimal sequence 7*

Let t; be the starting time of jobs in N;. It is clear that for any ¢ € Nj,the
possible values of that ¢; may take are contained in the set 7; = {0,1,2,..., P —
P} and ty = 0, where Py =} v p;. Let

fi(ti) - Z wj(Cj - d)z (4.1)
J;EN;
fi(t:) be the contribution of the jobs in N to the objective function (3) subject
to starting the processing at time t;.

Given t;, if job J; is first job in 7;, the completion time of job J; will be t;+p;,
then f;(t;) = wi(ti +ps—d)?+ fi_1(ti+p;). Otherwise, if job J; is last job in ;,the
completion time of job J; will be t; + P;, then f;(t;) = wi(t; + P — d)?+ fio1 (t:)-
Let

o) = wilti+p— AP+ fica(ti 1), (4.2)

o) = wilti+ P —d)? + fici(t). (4.3)

By the principle of optimality of dynamic programming, an optimal sequence
must sequence the jobs such that

fi(ts) = min{f2(t;), f2(t)}, for i=1,2,...,n,and t; € T; (4.4)

subject to fo(t:) = 0, fi(t:) = 00, Vt; ¢ T.

Based on above results, f;(t;),¢ = 1,2,...,n and t; € 7; can be computed
according to the recurrence relation (5)-(7). Since we assume that the machine
start processing its first job at time zero(t, = 0), the overall minimal objective
function of (3) is equal to fp,(0).

In summary, we propose the following algorithm.

Algorithm 1.
1. For i = 1,2,...,n, calculate f;(t;) for all ¢; € T according to (5)~(7),

and let
1, if fi(t) = fF (),
(1) = ? . 2
mi(ts) { 2, if filti) = f2 (%),
2. Let tn, = 0, F(m*) = fn(0).
3. Construct the sequence 7* that achieves F(n*) by a backward tracking
procedure.
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3.1. Let Ji,; and Jn+1 be empty.

3.2. Fori=n,n ,,2, do
gl = {Ji,ﬂhl}, if ma(ts) = 1,

' Titas i mg () = 2,

j2 — z+1’ if mi(ti) =1,

{ i1 } if mi(ti) =2,

b = tP if my(t:
i-1 ti, if my(t;

3.3. Let = {\721a'-]1,s722}‘

Theorem 5. For the constrained problem, if the agreeable weight condition is
satisfied, then

(1) The solution 7 generated by Algorithm 1 is optimal.

(2) The complezity of Algorithm 1 is O(n?P).

Proof. From the principle of optimality of dynamic programming, Algorithm 1
generates the best V-shape sequence.

Step 1 of the algorithm needs O(n?P) times to enumerate ¢;. Step 2 needs
O(nP) time and Step 3 needs O(n) time.

We now consider unconstrained problem. We first introduce the following
auxiliary problem:

~— —
il
[N

. 2
gé%lG( )= {m1ng(7r d)=a Jz‘:wj 5 —d) +ﬁjz:1ij} (4.5)
where D = {1,1+1/W,...,P~1/W, P}.

This problem is to find an optimal d* € D such that G(d*) is minimal. The
function G(d) is defined to be the minimum of ¢(r, d) with respect to 7. Since
1 < C; < P are integers, it is clear that all possible value that C can take are
contained in D. O

Theorem 6. * € II is an optimal sequence for unconstrained problem (3) if it
minimizes g(m,d*),Vr € IL.

Proof. Let d* be the optimal solution of problem (8), 7* be the optimal sequence
of problem (8) when d = d* is given.C}(i = 1,2, ..., n) be the completion times
corresponding to 7*.C* = 'VIV E?zl w;Cy.

Clearly d = C* € D. So
G(d*) = g(*,d") < G(C*) = g(=°,C*) < g(*, C*),

where 7¥ is the optimal sequence that minimizes g(m,d) with d = C*.
From (8), we have

QZwJ .—d*)2+ﬁZwJC*<a2Zw3 C*)MﬁZwJ

=1
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which gives W(C* — d*)? <0, it means d* = C*.
Hence for any 7 € II and the corresponding C},

G(d*) = g(n*,d*) < G(C) = g(7,C) < g(m, C),

where 7 is the sequence that minimizes g(r, C).

This implies that 7* is an optimal sequence for problem (3). O

Theorem 6 indicates that a solution to the unconstrained problem (3) can be
obtained by solving the new problem (8). We now propose a dynamic program-
ming algorithm to solve problem (8).

Given a d € D, the sequence m will minimize g(r,d) if it minimizes (=, d),
defined as following

n
g(m,d) = g(r,d) - Wpd =Y _[o?w;(C; — d)* + Buw;(C; — d)],
Jj=1

Let

filtd) = Y [@Pw;(Cy — d)* + Bw; (C; — d)). (4.6)

J; €N

fi(t;) be the contribution of the jobs in NV; to the overall objective function §(r, d)
subject to starting the processing at time ¢;.Given t;, if job J; is first job in 7;, the
completion time of job J; will be t;+p;, then f;(t;) = o®w;(t;+p; —d)? -+ Pw; (t; +
p; —d)+ fi—1(t; +p;). Otherwise, if job J; is last job in m;, the completion time of
job J; will be ¢; + P;,then f; (tz) = a2w¢(t¢ +P;— d)2 + Bw; (ti +P— d)2 + fi—1 (ti).
Let

o) = Pwlti +pi —d)?+ Bwi(t +pi — d) + fica(ti +pi), (4.7)

o) = o*wilti+ Pi—d)? 4 Pwilts + P —d)® + fiia(t:).  (4.8)

By the principle of optimality of dynamic programming, an optimal must be
sequence the jobs such that

filty) = min{f2(t), f2(t:)}, for i=1,2,...,n,and t; € T, (4.9)

subject to fo(t:) = 0, fi(t;) = 00, Vt; ¢ T,.

Based on above results, f;(¢;),4 = 1,2,...,n and t; € T; can be computed
according to the recurrence relation (10)-(12). Since we assume that the machine
start processing its first job at time zero(ry, = 0), the overall minimal objective
function of (8) is equal to f,,(d).

In summary, we propose the following algorithm.

Algorithm 2.
1. For i =1,2,...,n,calculate f;(t;) for all t; € 7; according to (10)-(12),

and let ) = F4(t)
]-a i W) = zg’t'i7
milte) = { 2, i filts) = fo(t)

2. Let t, =0, F(n*) = fn(0).
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3. Construct the sequence 7* that achieves F(7*) by a backward tracking
procedure.
3.1. Let J,,; and JZ2,, be empty,
3.2. Fori=n,n—1,...,2,do

Tl = {Jiy Tl iEma(t) =1
¢ ‘71'1-}—1’ lf mz(tl) = 2.

)

‘7.2 — 1'2_|_1, if mi(ti) =1
(T2, 1}, ifma(t) = 2.

bl

BN =

P t; + psy if m,-(ti) =
-1 ti, if mi(ti) ==

3.3. Let 7* = {J4, J1, J2}.

Theorem 7. For the unconstrained problem, if the agreeable weight condition
is satisfied, then

(1) The solution m* generated by Algorithm 1 is optimal.

(2) The complezity of Algorithm 1 is O(nW P).

Proof. From the principle of optimality of dynamic programming, Algorithm 1
generates the best V-shape sequence.

Step 1 of the algorithm needs O(nW P) times to enumerate ¢;. Step 2 needs
O(W P) time and Step 3 needs O(n) time. O

5. Conclusions

In this paper, we have examined the single machine scheduling problem in
which the machine is subject to stochastic breakdowns and jobs have deter-
ministic processing times. The objective is to minimize the weighted squared
deviation of job completion times from a common due date. Two versions of the
problem are addressed.In the first one the common due date is a given constant,
whereas in the second one the common due date is a decision variable. We first
develop the deterministic equivalent of the two versions of the stochastic prob-
lem when the counting process N (t) related to the machine uptimes is a Poisson
process. We then show that an optimal schedule must be V-shaped in terms
of weighted processing time when the jobs satisfy the agreeable weight condi-
tion. Based on the V-shaped property, two dynamic programming algorithms
with pseudopolynomial time complexity are proposed. Further study includes
the investigation of the problems where the jobs have arbitrary due dates,or the
counting process related to the machine uptimes is a nonhomogeneous Poisson
process.



900 Chuan-li Zhao and Heng-yong Tang
REFERENCES

1. J. Birge, J.B.G. Frenk, J. Mittenthal and A.H.G. Rinnooy Kan, Single machine scheduling
subject to stochastic breakdowns, Naval Research Logistic, 37(1990), 661-677,

2. U. Bagchi, R.S. Sullivan and Y.L. Chang, Minimizing mean squared deviation of completion
times about a common due date, Management Science, 33(1987), 894-906.

3. X. Cai, Minimization of agreeably weighted variance in single machine systems, European
Journal of Operational Research, 85(1995), 576-592.

4. X. Cai, V-shape property for job sequences that minimize the expected completion time
variance, European Journal of Operational Research, 91(1996), 118-123.

5. X. Caiand F. 8. Tu, Scheduling jobs with random processing times on a single machine sub-
ject to stochastic breakdowns to minimize early-tardy penalties, ENaval Research Logistic,
43(1996), 1127-1146.

6. T.C.E. Cheng and M.C. Gupta, Survey of scheduling research involving due date determi-
nation decisions, European Journal of Operational Research, 38(1989), 156—-166.

7. P. De, J.B. Ghosh and C.E. Wells, On the minimization of completion time variance with
a bicriteria extension, Operations Research, 40(1992), 786-796.

8. V. Gordon, J-M. Proth and C. Chu, A survey of the state-of-the-art of common due date
assignment and scheduling research, European Journal of Operational Research, 139(2002),
1-15.

9. M.C. Gupta, Y.P. Gupta and A. Kumar, Minimizing flow time variance in a single machine
system using genetic algorithms, European Journal of Operational Research, 70(1993), 289-
303.

10. W. Kubiak, Completion time variance minimization on a single machine is difficult, Op-
erations Research Letters, 14(1993), 49-59.

11. W. Kubiak, New results on the completion time variance minimization, Discrete Applied
Mathematics, 58(1995), 157-168.

12. A.G. Merten and M.E. Muller, Variance minimization in a single machine sequencing
problems, Management Science, 18(1972), 518-528.

13. J. Mittenthal and M.Raghavachari, Stochastic single machine scheduling with quadratic
early-tardy penalties, Operations Research, 41(1993), 786-796.

14. L. Schrage, Minimizing the time-in-system variance for a finite job set, Management
Science, 21(1975), 540-543.

Chuan-li Zhao is a professor at the School of Mathematics and System Science, Shenyang
Normal University. He received his Ph. D from the Northeastern University. His research
interests focus on scheduling and combinatorial optimization.

School of Mathematics and Systems Science, Shenyang Normal University, Shenyang
110034, P. R. China.

e-mail: zhaochuanli@@synu.edu.cn, czhao58@@yahoo.com.cn

Heng-yong Tang is a professor at the School of Mathematics and System Science,
Shenyang Normal University. His research interests focus on stochastic programing and
combinatorial optimization.

School of Mathematics and Systems Science, Shenyang Normal University, Shenyang
110034, P. R. China.

e-mail: hytang43876@@sina.com



