• Title/Summary/Keyword: Q polynomials

Search Result 207, Processing Time 0.029 seconds

Polynomials satisfying f(x-a)f(x)+c over finite fields

  • Park, Hong-Goo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.277-283
    • /
    • 1992
  • Let GF(q) be a finite field with q elements where q=p$^{n}$ for a prime number p and a positive integer n. Consider an arbitrary function .phi. from GF(q) into GF(q). By using the Largrange's Interpolation formula for the given function .phi., .phi. can be represented by a polynomial which is congruent (mod x$^{q}$ -x) to a unique polynomial over GF(q) with the degree < q. In [3], Wells characterized all polynomial over a finite field which commute with translations. Mullen [2] generalized the characterization to linear polynomials over the finite fields, i.e., he characterized all polynomials f(x) over GF(q) for which deg(f) < q and f(bx+a)=b.f(x) + a for fixed elements a and b of GF(q) with a.neq.0. From those papers, a natural question (though difficult to answer to ask is: what are the explicit form of f(x) with zero terms\ulcorner In this paper we obtain the exact form (together with zero terms) of a polynomial f(x) over GF(q) for which satisfies deg(f) < p$^{2}$ and (1) f(x+a)=f(x)+c for the fixed nonzero elements a and c in GF(q).

  • PDF

초정밀 비구면의의 설계, 측정 및 가공의 비용절감을 지원하는 새로운 비구면 표현식 Q Polynomials의 소개

  • Sin, Ji-Sik
    • The Optical Journal
    • /
    • s.150
    • /
    • pp.31-41
    • /
    • 2014
  • 현재까지 많은 업체에서 사용되는 비구면 표현식의 단점을 해결하여 직관적이며 예측가능한 면을 표현할 수 있는 새로운 비구면 표현식, 일명 Q Polynomials (또는 Forbes Polynomials, Q-type Polynomials)을 소개한다. Q Polynomials은 기존 quadratic polynomial을 이용한 표현식과 달리 서로 영향을 미치지 않는 유일한 함수 Qm를 기본으로 하는 다항식으로 구성되어 있기 때문에 각 계수는 하나의 비구면에 대해 유일한 계수다. 각 항의 함수의 모양이 이미 정해져 있기 때문에 계수들의 크기를 살펴보면 비구면도, 측정 가능성, 가공 및 생산 가능성에 대한 예측이 가능하다. 따라서 비구면 설계 시점에서부터 시험/검사, 생산이 실질적으로 가능한 비구면 광학요소인지가 판정되므로 설계시부터 설계자, 시험/검사자, 생산자 사이의 합의가 이루어지는 것과 같다. 따라서 생산성과 간섭계 측정을 이용한 초정밀 비구면를 제조할 수 있는 결과에 이르게 된다. 이미 도입한 여러 업체에서 긍정적인 결과를 얻고 있다. Q polynomials은 기존에 현업에서 사용되고 있는 광학 설계 프로그램에도 적용되어 사용 가능하다.

  • PDF

COMPLEX FACTORIZATIONS OF THE GENERALIZED FIBONACCI SEQUENCES {qn}

  • JUN, SANG PYO
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.371-377
    • /
    • 2015
  • In this note, we consider a generalized Fibonacci sequence {$q_n$}. Then give a connection between the sequence {$q_n$} and the Chebyshev polynomials of the second kind $U_n(x)$. With the aid of factorization of Chebyshev polynomials of the second kind $U_n(x)$, we derive the complex factorizations of the sequence {$q_n$}.

SOME NEW RESULTS ON THE RUDIN-SHAPIRO POLYNOMIALS

  • Taghavi, M.;Azadi, H.K.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.583-590
    • /
    • 2008
  • In this article, we focuss on. sequences of polynomials with {$\pm1$} coefficients constructed by recursive argument that is known as Rudin-Shapiro polynomials. The asymptotic behavior of these polynomials defines as the ratio of their 2q-norm with 2-norm to be dominated by some number depending on q or "the best" by an absolute constant. In this work we first show the conjecture holds for some finite numbers of m and then introduce a technique that give the result for any positive odd integer m whenever it holds for all pervious even numbers.

  • PDF

FORMULAS DEDUCIBLE FROM A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN SEVERAL VARIABLES

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.603-614
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subsequently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. In this sequel, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in $m$ variables to present two generating functions of the generalized Gottlieb polynomials ${\varphi}^m_n({\cdot})$. Here, we show that many formulas regarding the Gottlieb polynomials in m variables and their reducible cases can easily be obtained by using one of two generating functions for Choi's generalization of the Gottlieb polynomials in m variables expressed in terms of well-developed Lauricella series $F^{(m)}_D[{\cdot}]$.

Analysis of One-dimensional cellular automata over GF(q)

  • Cho, Sung-Jin;Kim, Han-Doo;Choi, Un-Sook
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.2
    • /
    • pp.21-32
    • /
    • 2000
  • We study theoretical aspects of one-dimensional cellular automata over GF(q), where q is a power of a prime. Some results about the characteristic polynomials of such cellular automata are given. Intermediate boundary cellular automata are defined and related to the more common null boundary cellular automata.

  • PDF