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FORMULAS DEDUCIBLE FROM A GENERALIZATION

OF GOTTLIEB POLYNOMIALS IN SEVERAL

VARIABLES

Junesang Choi

Abstract. Gottlieb polynomials were introduced and investigated
in 1938, and then have been cited in several articles. Very recently
Khan and Akhlaq introduced and investigated Gottlieb polynomi-
als in two and three variables to give their generating functions.
Subsequently, Khan and Asif investigated the generating functions
for the q-analogue of Gottlieb polynomials. In this sequel, by mod-
ifying Khan and Akhlaq’s method, Choi presented a generalization
of the Gottlieb polynomials in m variables to present two generat-
ing functions of the generalized Gottlieb polynomials ϕm

n (·). Here,
we show that many formulas regarding the Gottlieb polynomials
in m variables and their reducible cases can easily be obtained by
using one of two generating functions for Choi’s generalization of
the Gottlieb polynomials in m variables expressed in terms of well-

developed Lauricella series F
(m)
D [·].

1. Introduction and Preliminaries

Generating functions play an important role in the investigation of
various useful properties of the sequences which they generate. They
are used in finding certain properties and formulas for numbers and
polynomials in a wide variety of research subjects, indeed, in modern
combinatorics. For a systematic introduction to, and several interesting
(and useful) applications of the various methods of obtaining linear,
bilinear, bilateral or mixed multilateral generating functions for a fairly
wide variety of sequences of special functions (and polynomials) in one,
two and more variables, among much abundant literature, we refer to the
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extensive work by Srivastava and Manocha [13]. While concerning some
orthogonal polynomials on a finite or enumerable set of points, Gottlieb
[7] developed the following interesting polynomials (see also [3]; [8]; [9];
[11, p. 303]; [13, pp. 185–186]):

(1.1)
ϕn(x;λ) : = e−nλ

n∑
k=0

(
n

k

)(
x

k

) (
1− eλ

)k
= e−nλ 2F1

(
−n, −x ; 1 ; 1− eλ

)
,

where 2F1 denotes Gauss’s hypergeometric series whose natural gen-
eralization of an arbitrary number of p numerator and q denominator
parameters (p, q ∈ N0 := N ∪ {0}, and N the set of positive integers) is
called and denoted by the generalized hypergeometric series pFq defined
by

(1.2)
pFq

[
α1, . . . , αp ;

β1, . . . , βq ;
z

]
=

∞∑
n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!

= pFq(α1, . . . , αp; β1, . . . , βq; z).

Here (λ)n is the Pochhammer symbol defined (for λ ∈ C) by

(1.3)

(λ)n : =

{
1 (n = 0)

λ(λ+ 1) . . . (λ+ n− 1) (n ∈ N)

=
Γ(λ+ n)

Γ(λ)
(λ ∈ C \ Z−0 )

and Z−0 denotes the set of nonpositive integers and Γ(λ) is the familiar
Gamma function.

Gottlieb [7] presented many interesting identities for his polynomials
ϕn(x;λ), which is denoted by ln(x) in [7], including the following two
generating functions (see also [8]; [9]; [11, p. 303]; [13, pp. 185–186]):

(1.4)

∞∑
n=0

ϕn(x;λ) tn = (1− t)x
(

1− t e−λ
)−x−1

(|t| < 1);

(1.5)
∞∑
n=0

(µ)n
n!

ϕn(x;λ) tn =
(

1− t e−λ
)−µ

2F1

[
µ, −x ;

1 ;

(
1− e−λ

)
t

1− t e−λ

]
.
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Recently Khan and Akhlaq [8] introduced and investigated Gottlieb
polynomials in two and three variables to give their generating func-
tions. Subsequently, Khan and Asif [9] investigated the generating func-
tions for the q-analogue of Gottlieb polynomials (see also [4, 5]). In this
sequel, by modifying Khan and Akhlaq’s method [8], Choi presented
a generalization of the Gottlieb polynomials in m variables to present
two generating functions of the generalized Gottlieb polynomials ϕmn (·).
Here, as noted in [3], we show that many formulas regarding the Got-
tlieb polynomials in m variables and their reducible cases can easily be
obtained by using one of Choi’s generating functions for a generaliza-
tion of the Gottlieb polynomials in m variables expressed in terms of

well-developed Lauricella series F
(m)
D [·].

2. Generalized Gottlieb polynomials and their generating
functions

Here, we just recall the definition of a several variable analogue of
the Gottlieb polynomials ϕn(x;λ) and one of their generating functions
in [3].

Definition. An extension of the Gottlieb polynomials ϕn(x;λ) in
m variables is defined by

(2.1)

ϕmn (x1, x2, . . . , xm;λ1, λ2, . . . , λm)

= exp (−nσm)

n∑
r1=0

n−r1∑
r2=0

n−r1−r2∑
r3=0

· · ·
n−r1−r2−···−rm−1∑

rm=0

·
(−n)δm ·

∏m
j=1 (−xj)rj ·

∏m
j=1

(
1− eλj

)rj∏m
j=1 rj ! · δm!

(n, m ∈ N),

where, for convenience,

(2.2) σm :=
m∑
j=1

λj and δm :=
m∑
j=1

rj .

It is noted that the special case m = 1 of (2.1) reduces immediately
to the second one of the Gottlieb polynomials ϕn(x;λ) in (1.1) and the
cases of (2.1) when m = 2 and m = 3 correspond with those in [8, 9].
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The following generating function for ϕmn (x1, x2, . . . , xm;λ1, λ2, . . . ,
λm) holds true:
(2.3)
∞∑
n=0

(µ)n ϕ
m
n (x1, x2, . . . , xm;λ1, λ2, . . . , λm)

tn

n!
=
(
1− t e−σm

)−µ
· F (m)

D

[
µ, −x1, . . . , −xm; 1 ;

t
(
eλ1 − 1

)
e−σm

1− t e−σm
, . . . ,

t
(
eλm − 1

)
e−σm

1− t e−σm

]
,

where F
(m)
D [·] denotes one of the Lauricella series in m variables (see [12,

p. 33, Eq. (4)]) defined by

(2.4)

F
(m)
D [a, b1, . . . , bm; c ;x1, . . . , xm]

=

∞∑
r1=0,...,rm=0

(a)δm (b1)r1 · · · (bm)rm
(c)δm

xr11
r1!
· · · x

rm
m

rm!

(max {|x1|, . . . , |xm|} < 1) ,

and σm, δm are given in (2.2).

3. Generalized generating functions ϕmn (x1, x2, . . . , xm;λ1, λ2,
. . . , λm)

In view of (2.3), we begin by recalling two known integral represen-

tations for the m variables Lauricella series F
(m)
D [·] among its several

other properties (see [2, pp. 114–120]). A definite integral expression of

F
(m)
D [·] is given (see [2, p. 115, Eq. (7)]):

(3.1)

F
(m)
D [a, b1, . . . , bm; c ;x1, . . . , xm]

=
Γ(c)

Γ (b1) · · ·Γ (bm) Γ (c− b1 − · · · − bm)

·
∫
· · ·
∫

ub1−11 · · ·ubm−1m (1− u1 − · · · − um)c−b1−···−bm−1

· (1− u1 x1 − · · · − um xm)−a du1 . . . dum

(u1 = 0, . . . , um = 0, u1 + u2 + · · ·+ um 5 1) .
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The function F
(m)
D [·] can also be represented by a simple integral (see

[2, p. 116, Eq. (8)]):
(3.2)

F
(m)
D [a, b1, . . . , bm; c ;x1, . . . , xm]

=
Γ(c)

Γ (a) Γ (c− a)

∫ 1

0

ua−1 (1− u)c−a−1 (1− ux1)
−b1 · · · (1− uxm)

−bm du.

By making in the integral (3.2) the following 2m+ 1 replacements:

u = 1− v, u =
v

(1− x1) + v x1
, · · · , u =

v

(1− xm) + v xm
,

u =
1− v

1− v x1
, · · · , u =

1− v
1− v xm

,

we obtain 2m + 1 transformation formulas for the function F
(m)
D [·] (see

[2, p. 116]):
(3.3)

F
(m)
D [a, b1, . . . , bm; c ;x1, . . . , xm]

= (1 − x1)−b1 · · · (1 − xm)−bm F
(m)
D

[
c− a, b1, . . . , bm; c ;

x1

x1 − 1
, . . . ,

xm

xm − 1

]
(3.4)

= (1 − x1)−a

· F (m)
D

[
a, c− b1 − · · · − bm, b2, . . . , bm; c ;

x1

x1 − 1
,
x1 − x2

x1 − 1
, . . . ,

x1 − xm

x1 − 1

]
· · · · · ·

(3.5)

= (1 − x1)c−a−b1 (1 − x2)−b2 · · · (1 − xm)−bm

· F (m)
D

[
c− a, c− b1 − · · · − bm, b2, . . . , bm; c ;x1,

x1 − x2

1 − x2
, . . . ,

x1 − xm

1 − xm

]
· · · · · ·

From the integral representation (3.2), diverse reduction formulas for

F
(m)
D can be deduced: For example,

(3.6) F
(m)
D [a, b1, . . . , bm; c ;x, . . . , x] = 2F1(a, b1 + · · ·+ bm; c ; x),

where, in particular, upon using Gauss’s summation formula:

(3.7)
2F1 (a, b; c; 1) =

Γ(c) Γ(c− a− b)
Γ(c− a) Γ(c− b)

(<(c− a− b) > 0; c ∈ C \ Z−0 )
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C being the set of complex numbers and Z−0 the set of nonpositive inte-
gers, we get
(3.8)

F
(m)
D [a, b1, . . . , bm; c ; 1, . . . , 1] =

Γ(c) Γ (c− a− b1 − · · · − bm)

Γ(c− a) Γ (c− b1 − · · · − bm)
.

By applying the transformation formulas (3.3)–(3.5) for F
(m)
D to the

right-hand side of (2.3), we can obtain a variety of generating functions
for ϕmn (x1, x2, . . . , xm;λ1, λ2, . . . , λm). For example,
(3.9)
∞∑
n=0

(µ)n ϕ
m
n (x1, x2, . . . , xm;λ1, λ2, . . . , λm)

tn

n!

=
(
1− t e−σm

)−µ m∏
j=1

(
1− t eλj−σm

1− t e−σm

)xj

· F (m)
D

[
1− µ, −x1, . . . , −xm; 1 ;

t
(
1− eλ1

)
e−σm

1− t eλ1−σm
, . . . ,

t
(
1− eλm

)
e−σm

1− t eλm−σm

]
.

4. Generating functions ϕ3
n(x1, x2, x3;λ1, λ2, λ3)

For special cases of the 2m + 1 transformation formulas for F
(m)
D in

Section 3, we give here 7 transformation formulas for F
(3)
D :

(4.1)

F
(3)
D [a, b1, b2, b3; c ;x1, x2, x3]

= (1− x1)
−b1 (1− x2)

−b2 (1− x3)
−b3

· F (3)
D

[
c− a, b1, b2, b3; c ;

x1
x1 − 1

,
x2

x2 − 1
,

x3
x3 − 1

]
(4.2)

= (1− x1)
−a

F
(3)
D

[
a, c− b1 − b2 − b3, b2, b3; c ;

x1
x1 − 1

,
x1 − x2
x1 − 1

,
x1 − x3
x1 − 1

]
(4.3)

= (1− x2)
−a

F
(3)
D

[
a, , b1, c− b1 − b2 − b3, b3; c ;

x2 − x1
x2 − 1

,
x2

x2 − 1
,
x2 − x3
x2 − 1

]
(4.4)

= (1− x3)
−a

F
(3)
D

[
a, b1, b2, c− b1 − b2 − b3; c ;

x3 − x1
x3 − 1

,
x3 − x2
x3 − 1

,
x3

x3 − 1

]



Formulas deducible from a generalization of Gottlieb polynomials 609

(4.5)

= (1− x1)c−a−b1 (1− x2)−b2 (1− x3)−b3

· F (3)
D

[
c− a, c− b1 − b2 − b3, b2, b3; c ;x1,

x1 − x2
1− x2

,
x1 − x3
1− x3

]

(4.6)

= (1− x1)−b1 (1− x2)c−a−b2 (1− x3)−b3

· F (3)
D

[
c− a, b1, c− b1 − b2 − b3, b3; c ;

x2 − x1
1− x1

, x2,
x2 − x3
1− x3

]
(4.7)

= (1− x1)−b1 (1− x2)−b2 (1− x3)c−a−b3

· F (3)
D

[
c− a, b1, b2, c− b1 − b2 − b3; c ;

x3 − x1
1− x1

,
x3 − x2
1− x2

, x3

]
.

In view of (2.3), applying these 7 transformation formulas (4.1)–(4.7)

for F
(3)
D , we can get 7 generating functions for ϕ3

n. For example,

(4.8)

∞∑
n=0

(µ)n ϕ
3
n (x1, x2, x3;λ1, λ2, λ3)

tn

n!

=
(
1− t e−σ3

)−µ 3∏
j=1

(
1− t eλj−σ3
1− t e−σ3

)xj

· F (3)
D

[
1− µ, −x1, −x2, −x3; 1 ;

t
(
1− eλ1

)
e−σ3

1− t eλ1−σ3
,

t
(
1− eλ2

)
e−σ3

1− t eλ2−σ3
,
t
(
1− eλ3

)
e−σ3

1− t eλ3−σ3

]
,

which is a special case of (3.9) when m = 3.

5. Generating functions ϕ2
n(x1, x2;λ1, λ2)

We begin by recalling one of the four Appell series Fj (j = 1, 2, 3, 4)
(certain hypergeometric series in two variables) (see [1, p. 296, Eq. (1)]
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and see also [12, p. 22, Eq. (2)]:

(5.1)

F1 [a, b1, b2; c; x1, x2] =
∞∑

r1, r2=0

(a)r1+r2 (b1)r1 (b2)r2
(c)r1+r2

xr11
r1!

xr22
r2!

=
∞∑
r=0

(a)r (b1)r
(c)r

2F1

[
a+ r, b2 ;

c+ r ;
x2

]
xr1
r!

(max {|x1| , |x2|} < 1) .

We find from (2.4) and (5.1) that

(5.2) F
(2)
D [a, b1, b2; c; x1, x2] = F1 [a, b1, b2; c; x1, x2] .

Setting m = 2 in Eq. (2.3) and considering (5.2), we get a generating
function for ϕ2

n(x1, x2;λ1, λ2):

(5.3)

∞∑
n=0

(µ)n ϕ
2
n (x1, x2;λ1, λ2)

tn

n!
=
(
1− t e−σ2

)−µ
· F1

[
µ, −x1, −x2; 1 ;

t
(
eλ1 − 1

)
e−σ2

1− t e−σ2
,
t
(
eλ2 − 1

)
e−σ2

1− t e−σ2

]
.

Recall a known reduction formula for F1 (see [6, p. 238, Eq. (1)]):
(5.4)

F1 [a, b1, b2; b1 + b2; x1, x2] = (1− x2)−a 2F1

[
a, b1 ;

b1 + b2 ;

x1 − x2
1− x2

]
.

Further choosing x2 = −x1 − 1 in (5.3) and using (5.4), we obtain

(5.5)

∞∑
n=0

(µ)n ϕ
2
n (x1, −x1 − 1;λ1, λ2)

tn

n!

=
(

1− t e−λ1
)−µ

2F1

[
µ, −x1 ;

1 ;

t
(
e−λ2 − e−λ1

)
1− t e−λ1

]
.

Expanding the right-hand side of (5.5) in powers of t and then equating
the coefficients of tn on each side, we have
(5.6)

ϕ2
n (x1, −x1 − 1;λ1, λ2) = e−λ1 n 2F1

(
−x1, −n ; 1 ; 1− eλ1−λ2

)
(n ∈ N0) .

Expanding the right-hand side of (5.3) by using the last equality in
(5.1) in powers of t and substituting the resulting series for the right-
hand side of (5.3), and comparing the coefficients of tn on both sides of
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the finally obtained equation, we get

(5.7)

ϕ2
n (x1, x2;λ1, λ2) =e−σ2 n

n∑
m=0

(−n)m (−x2)m
(
1− eλ2

)m
m!m!

· 2F1

[ −x1, −m;

1 + x2 −m ;

1

eλ2 − 1

]
(n ∈ N0) .

By using Gauss’s summation formula (3.7) and a known identity, Z being
the set of integers,

(5.8)
Γ(α− n)

Γ(α)
=

(−1)n

(1− α)n
(α ∈ C \ Z) ,

we obtain an interesting special case of (5.7) when λ2 = ln 2:
(5.9)

ϕ2
n (x1, x2;λ1, ln 2) =

e−λ1 n

2n
2F1

[−n, −x1 − x2 ;

1 ;
− 1

]
(n ∈ N0) .

It is noted that the known reducible cases of special values of the
variables for F1 are far less numerous. Appell and Kampé de Fériet’s
monograph [2] gives only (see [6, p. 239, Eq. (10) and Eq. (11)]):

(5.10) F1 [a, b1, b2; c; x, 1] =
Γ(c) Γ(c− a− b2)
Γ(c− a) Γ(c− b2)

2F1 (a, b1 ; c− b2 ; x)

and

(5.11) F1 [a, b1, b2; c; x, x] = 2F1 (a, b1 + b2 ; c ; x) .

Setting λ1 = λ2 = λ in (5.3) and using (5.11), we get

(5.12)

∞∑
n=0

(µ)n ϕ
2
n (x1, x2;λ, λ)

tn

n!

=
(

1− t e−2λ
)−µ

2F1

[
µ, −x1 − x2 ;

1 ;

t
(
eλ − 1

)
e−2λ

1− t e−2λ

]
.

Expanding the right-hand side of (5.12) in powers of t and equating the
coefficients of tn on both sides of the resulting series, we obtain
(5.13)

ϕ2
n (x1, x2;λ, λ) = e−2λn 2F1

[−n, −x1 − x2 ;

1 ;
1− eλ

]
(n ∈ N0) .

With the considerable number of hypergeometric series of the second
order in two variables, the complete set of transformations would run
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into the hundreds, and only a few examples are recalled here (see [6, pp.
239–240, Equations (1)–(5)]):

(5.14)

F1 [a, b1, b2; c; x, y]

= (1− x)−b1 (1− y)−b2 F1

[
c− a, b1, b2; c;

x

x− 1
,

y

y − 1

]

(5.15) = (1− x)−a F1

[
a, c− b1 − b2, b2; c;

x

x− 1
,
y − x
1− x

]

(5.16) = (1− y)−a F1

[
a, b1, c− b1 − b2; c;

y − x
y − 1

,
y

y − 1

]

(5.17) = (1−x)c−a−b1 (1−y)−b2 F1

[
c− a, c− b1 − b2, b2; c; x,

x− y
1− y

]
(5.18)

= (1− x)−b1 (1− y)c−a−b2 F1

[
c− a, b1, c− b1 − b2 ; c;

x− y
x− 1

, y

]
.

Applying the transformation formulas (5.14)–(5.18) for F1 to the
right-hand side of (5.3), we get the following generating functions for
ϕ2
n (x1, x2;λ1, λ2):

(5.19)
∞∑
n=0

(µ)n ϕ
2
n (x1, x2;λ1, λ2)

tn

n!

=
(
1− t e−σ2

)−µ−x1−x2 (1− t e−λ2
)x1 (

1− t e−λ1
)x2

· F1

[
1− µ, −x1, −x2; 1 ;

(
1− eλ1

)
e−σ2 t

1− e−λ2 t
,

(
1− eλ2

)
e−σ2 t

1− e−λ1 t

]
(5.20)

=
(

1− t e−λ2
)−µ

· F1

[
µ, 1 + x1 + x2, −x2; 1 ;

(
1− eλ1

)
e−σ2 t

1− e−λ2 t
,

(
e−λ1 − e−λ2

)
t

1− e−λ2 t

]
(5.21)

=
(

1− t e−λ1
)−µ

· F1

[
µ, −x1, 1 + x1 + x2; 1 ;

(
e−λ2 − e−λ1

)
t

1− e−λ1 t
,

(
1− eλ2

)
e−σ2 t

1− e−λ1 t

]
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(5.22)

=
(
1− t e−σ2

)−1−x1−x2 (1− t e−λ2
)1−µ+x1 (

1− t e−λ1
)x2

· F1

[
1− µ, 1 + x1 + x2, −x2; 1 ;

(
eλ1 − 1

)
e−σ2 t

1− e−σ2 t
,

(
e−λ2 − e−λ1

)
t

1− e−λ1 t

]
(5.23)

=
(
1− t e−σ2

)−1−x1−x2 (1− t e−λ1
)1−µ+x2 (

1− t e−λ2
)x1

· F1

[
1− µ, −x1, 1 + x1 + x2; 1 ;

(
e−λ1 − e−λ2

)
t

1− e−λ2 t
,

(
eλ2 − 1

)
e−σ2 t

1− e−σ2 t

]
.

We can obtain explicit formulas for ϕ2
n (x1, x2;λ1, λ2) by using the

transformation formulas (5.19)–(5.23). For example, expanding the right-
hand side of (5.19) in powers of t and substituting the expanded series
for the right-hand side of (5.19), and equating the coefficients of tn on
both sides of the finally obtained identity, we have
(5.24)

(µ)n
n!

ϕ2
n (x1, x2;λ1, λ2)

=

n∑
r=0

r∑
m=0

m∑
k=0

(1− µ)r−k (−x1)r−m (−x2)m (µ+ x1 + x2)n−r
(n− r)! (r −m)! (m− k)! (r − k)! k!

·
(

1− eλ1
)r−m (

1− eλ2
)m−k

eλ2 k e−σ2 n

· 2F1

[−k, −x1 + r −m ;

1 + x2 −m ;
eλ1−λ2

]
(n ∈ N0) .
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