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1. Introduction

The Euler polynomials and numbers possess many interesting properties in
many areas of mathematics and physics. Many mathematicians have studied in
the area of the q-extension of the Euler numbers and polynomials (see [3-10]).

Recently, Y. Hu studied several identities of symmetry for Carlitz’s q-Bernoulli
numbers and polynomials in complex field (see [2]). D. Kim et al. [3] derived
some identities of symmetry for Carlitz’s q-Euler numbers and polynomials in
complex field. J.Y. Kang and C.S. Ryoo investigated some identities of symmetry
for q-Genocchi polynomials (see [1]). In [8], we obtained some identities of
symmetry for Carlitz’s twisted q-Euler polynomials associated with p-adic q-
integral on Zp. In this paper, we establish some interesting symmetric identities
for twisted q-Euler zeta functions and twisted q-Euler polynomials in complex
field. If we take ε = 1 in all equations of this article, then [3] are the special
case of our results. Throughout this paper we use the following notations. By
N we denote the set of natural numbers, Z denotes the ring of rational integers,
Q denotes the field of rational numbers, C denotes the set of complex numbers,
and Z+ = N ∪ {0}. We use the following notation:

[x]q =
1− qx

1− q
(see [1, 2, 3, 4]).
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Note that limq→1[x] = x. We assume that q ∈ C with |q| < 1. Let ε be the
pN -th root of unity. Then the twisted q-Euler polynomials En,q,ε are defined by
the generating function to be

Fq,ε(t, x) = [2]q

∞∑
n=0

(−1)nqnεne[x+n]qt =

∞∑
n=0

En,q,ε(x)
tn

n!
. (1.1)

When x = 0, En,q,ε = En,q,ε(0) are called the twisted q-Euler numbers. By (1.1)
and Cauchy product, we have

En,q,ε(x) =

n∑
l=0

(
n

l

)
qlxEl,q,ε[x]

n−l
q

= (qxEq,ε + [x]q)
n

(1.2)

with the usual convention about replacing (Eq,ε)
n by En,q,ε.

By using (1.1), we note that

dk

dtk
Fq,ε(t, x)

∣∣∣∣
t=0

= [2]q

∞∑
n=0

(−1)nεnqn[n+ x]kq , (k ∈ N). (1.3)

By (1.3), we are now ready to define the Hurwitz type of the twisted q-Euler
zeta functions.

Definition 1.1. Let s ∈ C and x ∈ R with x ̸= 0,−1,−2, . . .. We define

ζq,ε(s, x) = [2]q

∞∑
n=0

(−1)nεnqn

[n+ x]sq
. (1.4)

Note that ζq,ζ(s, x) is a meromorphic function on C. A relation between
ζq,ε(s, x) and Ek,q,ε(x) is given by the following theorem.

Theorem 1.2. For k ∈ N, we get

ζq,ε(−k, x) = Ek,q,ε(x). (1.5)

Observe that ζq,ε(−k, x) function interpolates Ek,q,ε(x) polynomials at non-
negative integers.

2. Symmetric property of twisted q-Euler zeta functions

In this section, by using the similar method of [1, 2, 3], expect for obvi-
ous modifications, we investigate some symmetric identities for twisted q-Euler
polynomials and twisted q-Euler zeta functions. Let w1, w2 ∈ N with w1 ≡ 1
(mod 2), w2 ≡ 1 (mod 2).
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Theorem 2.1. For w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), we have

w2−1∑
i=0

[2]qw1 [w1]
s
q(−1)iεw1iqw1iζqw2 ,εw2

(
s, w1x+

w1i

w2

)

=

w1−1∑
j=0

[2]qw2 [w2]
s
q(−1)jεw2jqw2jζqw1 ,εw1

(
s, w2x+

w1j

w2

)
.

Proof. Observe that [xy]q = [x]qy [y]q for any x, y ∈ C. In Definition 1.1, we

derive next result by substitute w1x + w1i
w2

for x in and replace q and ε by qw2

and εw2 , respectively.

ζqw2 ,εw2 (s, w1x+
w1i

w2
) = [2]qw2

∞∑
n=0

(−1)nεw2nqw2n

[n+ w1x+ w1i
w2

]sqw2

= [2]qw2 [w2]
s
q

∞∑
n=0

(−1)nεw2nqw2n

[w1w2x+ w1i+ w2n]sq
.

(2.1)

Since for any non-negative integer n and odd positive integer w1, there exist
unique non-negative integer r, j such that m = w1r+ j with 0 ≤ j ≤ w1− 1. So,
the equation (2.1) can be written as

ζqw2 ,ζw2

(
s, w1x+

w1i

w2

)
= [2]qw2 [w2]

s
q

∞∑
w1r+j=0
0≤j≤w1−1

(−1)w1r+jεw2(w1r+j)qw2(w1r+j)

[w1w2r + w1w2x+ w1i+ w2j]sq

= [2]qw2 [w2]
s
q

w1−1∑
j=0

∞∑
r=0

(−1)jεw2(w1r+j)qw2(w1r+j)

[w1w2(r + x) + w1i+ w2j]sq
.

(2.2)

In similarly, we can see that

ζqw1 ,εw1

(
s, w2x+

w2j

w1

)
= [2]qw1

∞∑
n=0

(−1)nεw1nqw1n

[n+ w2x+ w2j
w1

]sqw1

= [2]qw1 [w1]
s
q

∞∑
n=0

(−1)nεw1nqw1n

[w1w2x+ w1n+ w2j]sq
.

(2.3)
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Using the method in (2.2), we obtain

ζqw1 ,εw1

(
s, w2x+

w2j

w1

)
= [2]qw1 [w1]

s
q

∞∑
w2r+i=0
0≤i≤w2−1

(−1)w2r+iεw1(w2r+i)qw1(w2r+i)

[w1w2r + w1w2x+ w1i+ w2j]sq

= [2]qw1 [w1]
s
q

w2−1∑
i=0

∞∑
r=0

(−1)iεw1(w2r+i)qw1(w2r+i)

[w1w2(r + x) + w1i+ w2j]sq
.

(2.4)

From (2.2) and (2.4), we have

w2−1∑
i=0

[2]qw1 [w1]
s
q(−1)iεw1iqw1iζqw2 ,εw2

(
s, w1x+

w1i

w2

)

=

w1−1∑
j=0

[2]qw2 [w2]
s
q(−1)jεw2jqw2jζqw1 ,εw1

(
s, w2x+

w2j

w1

)
.

(2.5)

�

Next, we derive the symmetric results by using definition and theorem of the
twisted q-Euler polynomials.

Theorem 2.2. Let i, j and n be non-negative integers. For w1, w2 ∈ N with
w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), we have

[2]qw1

[w1]nq

w2−1∑
i=0

(−1)iεw1iqw1iEn,qw2 ,εw2

(
w1x+

w1i

w2

)

=
[2]qw2

[w2]nq

w1−1∑
j=0

(−1)jεw2jqw2jEn,qw1 ,εw1

(
w2x+

w2j

w1

)
.

Proof. By substitute w1x+
w1i
w2

for x in Theorem 1.2 and replace q and ε by qw2

and εw2 , respectively, we derive

En,qw2 ,εw2

(
w1x+

w1i

w2

)
= [2]qw2

∞∑
m=0

(−1)mεw2mqw2m

[
w1x+

w1i

w2
+m

]n
qw2

=
[2]qw2

[w2]nq

∞∑
m=0

(−1)mεw2mqw2m[w1w2x+ w1i+ w2m]nq .

(2.6)

Since for any non-negative integer m and odd positive integer w1, there exist
unique non-negative integer r, j such that m = w1r + j with 0 ≤ j ≤ w1 − 1.
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Hence, the equation (2.6) is written as

En,qw2 ,εw2

(
w1x+

w1i

w2

)
=

[2]qw2

[w2]nq

∞∑
w1r+j=0
0≤j≤w1−1

(−1)w1r+jεw2(w1r+j)qw2(w1r+j)

× [w1w2x+ w1i+ w2(w1r + j)]nq

=
[2]qw2

[w2]nq

w1−1∑
i=0

∞∑
r=0

(−1)w1r+jεw2(w1r+j)qw2(w1r+j)

× [w1w2(x+ r) + w1i+ w2j]
n
q .

(2.7)

In similar, we have

En,qw1 ,εw1

(
w2x+

w2j

w1

)
= [2]qw1

∞∑
m=0

(−1)mεw1mqw1m

[
w2x+

w2j

w1
+m

]n
qw1

=
[2]qw1

[w1]nq

∞∑
m=0

(−1)mεw1mqw1m[w1w2x+ w2j + w1m]nq

(2.8)

and

En,qw1 ,εw1

(
w2x+

w2j

w1

)
=

[2]qw1

[w1]nq

∞∑
w2r+i=0
0≤i≤w2−1

(−1)w2r+iεw1(w2r+i)qw1(w2r+j)

× [w1w2x+ w1i+ w2(w1r + j)]nq

=
[2]qw1

[w1]nq

w2−1∑
i=0

∞∑
r=0

(−1)w2r+iεw1(w2r+i)qw1(w2r+i)

× [w1w2(x+ r) + w1i+ w2j]
n
q .

(2.9)
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It follows from the above equation that

[2]qw1

[w1]nq

w2−1∑
i=0

(−1)iεw1iqw1iEn,qw2 ,εw2

(
w1x+

w1i

w2

)

=
[2]qw1

[w1]nq

[2]qw2

[w2]nq

w1−1∑
j=0

w2−1∑
i=0

∞∑
r=0

(−1)i+jεw1w2r+w1i+w2j

× qw1w2r+w1i+w2j [w1w2(x+ r) + w1i+ w2j)]
n
q

=
[2]qw2

[w2]nq

w1−1∑
j=0

(−1)jεw2jqw2jEn,qw1 ,εw1

(
w2x+

w2j

w1

)
.

(2.10)

From (2.8) and (2.9), the proof of the Theorem 2.2 is completed. �
By (1.2) and Theorem 2.2, we have the following theorem.

Theorem 2.3. Let i, j and n be non-negative integers. For w1, w2 ∈ N with
w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), we have

[2]qw1

n∑
k=0

(
n

k

)
[w1]

k
q [w2]

n−k
q En−k,qw2 ,εw2 (w1x)

w2−1∑
i=0

(−1)iεw1iq(1+n−k)w1i[i]kqw1

= [2]qw2

n∑
k=0

(
n

k

)
[w1]

n−k
q [w2]

k
qEn−k,qw1 ,εw1 (w2x)

w1−1∑
j=0

(−1)jεw2jq(1+n−k)w2j [j]kqw2 .

Proof. After some calculations, we obtain

[2]qw1

[w1]nq

w2−1∑
i=0

(−1)iζw1iqw1iEn,qw2 ,εw2

(
w1x+

w1i

w2

)

=
[2]qw1

[w1]nq

w2−1∑
i=0

(−1)iεw1iqw1i
n∑

l=0

(
n

l

)
q(n−l)w1iEn−l,qw2 ,εw2 (w1x)

[
w1i

w2

]l
qw2

=
[2]qw1

[w1]nq

n∑
k=0

(
n

k

)
En−k,qw2 ,εw2 (w1x)

w2−1∑
i=0

(−1)iεw1iq(1+n−k)w1i

[
w1

w2

]k
qw2

[i]kqw1

=
[2]qw1

[w1]nq

n∑
k=0

(
n

k

)[
w1

w2

]k
qw2

En−k,qw2 ,εw2 (w1x)

w2−1∑
i=0

(−1)iεw1iq(1+n−k)w1i[i]kqw1 ,

(2.11)

and
[2]qw2

[w2]nq

w1−1∑
j=0

(−1)jεw2jqw2jEn,qw2 ,εw2

(
w2x+

w2j

w1

)

=
[2]qw2

[w2]nq

n∑
k=0

(
n

k

)[
w1

w2

]k
qw1

En−k,qw1 ,εw1 (w2x)

×
w1−1∑
j=0

(−1)jεw2jq(1+n−k)w2j [j]kqw2 .

(2.12)
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From (2.11), (2.12) and Theorem 2.2, we obtain that

[2]qw1

n∑
k=0

(
n

k

)
1

[w1]
n−k
q [w2]kq

En−k,qw2 ,εw2 (w1x)

×
w2−1∑
i=0

(−1)iεw1iq(1+n−k)w1i[i]kqw1

= [2]qw2

n∑
k=0

(
n

k

)
1

[w1]kq [w2]
n−k
q

En−k,qw1 ,εw1 (w2x)

×
w1−1∑
j=0

(−1)jεw2jq(1+n−k)w2j [j]kqw2 .

Hence, we have above theorem. �

By Theorem 2.3, we obtain the interesting symmetric identity for twisted
q-Euler numbers in complex field.

Corollary 2.4. For w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), we have

[2]qw1

n∑
k=0

(
n

k

)
[w1]

k
q [w2]

n−k
q En−k,qw2 ,εw2

w2−1∑
i=0

(−1)iεw1iq(1+n−k)w1i[i]kqw1

= [2]qw2

n∑
k=0

(
n

k

)
[w1]

n−k
q [w2]

k
qEn−k,qw1 ,εw1

w1−1∑
j=0

(−1)jεw2jq(1+n−k)w2j [j]kqw2 .
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