SYMMETRIC IDENTITIES FOR TWISTED q-EULER ZETA FUNCTIONS

N.S. JUNG AND C.S. RYOO*

Abstract

In this paper we investigate some symmetric property of the twisted q-Euler zeta functions and twisted q-Euler polynomials.

AMS Mathematics Subject Classification : 11B68, 11S40, 11S80.
Key words and phrases : twisted q-Euler numbers and polynomials, twisted q-Euler zeta function, symmetric property.

1. Introduction

The Euler polynomials and numbers possess many interesting properties in many areas of mathematics and physics. Many mathematicians have studied in the area of the q-extension of the Euler numbers and polynomials (see [3-10]).

Recently, Y. Hu studied several identities of symmetry for Carlitz's q-Bernoulli numbers and polynomials in complex field (see [2]). D. Kim et al. [3] derived some identities of symmetry for Carlitz's q-Euler numbers and polynomials in complex field. J.Y. Kang and C.S. Ryoo investigated some identities of symmetry for q-Genocchi polynomials (see [1]). In [8], we obtained some identities of symmetry for Carlitz's twisted q-Euler polynomials associated with p-adic q integral on \mathbb{Z}_{p}. In this paper, we establish some interesting symmetric identities for twisted q-Euler zeta functions and twisted q-Euler polynomials in complex field. If we take $\varepsilon=1$ in all equations of this article, then [3] are the special case of our results. Throughout this paper we use the following notations. By \mathbb{N} we denote the set of natural numbers, \mathbb{Z} denotes the ring of rational integers, \mathbb{Q} denotes the field of rational numbers, \mathbb{C} denotes the set of complex numbers, and $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$. We use the following notation:

$$
[x]_{q}=\frac{1-q^{x}}{1-q} \quad(\text { see }[1,2,3,4]) .
$$

[^0]Note that $\lim _{q \rightarrow 1}[x]=x$. We assume that $q \in \mathbb{C}$ with $|q|<1$. Let ε be the p^{N}-th root of unity. Then the twisted q-Euler polynomials $E_{n, q, \varepsilon}$ are defined by the generating function to be

$$
\begin{equation*}
F_{q, \varepsilon}(t, x)=[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} q^{n} \varepsilon^{n} e^{[x+n]_{q} t}=\sum_{n=0}^{\infty} E_{n, q, \varepsilon}(x) \frac{t^{n}}{n!} . \tag{1.1}
\end{equation*}
$$

When $x=0, E_{n, q, \varepsilon}=E_{n, q, \varepsilon}(0)$ are called the twisted q-Euler numbers. By (1.1) and Cauchy product, we have

$$
\begin{align*}
E_{n, q, \varepsilon}(x) & =\sum_{l=0}^{n}\binom{n}{l} q^{l x} E_{l, q, \varepsilon}[x]_{q}^{n-l} \tag{1.2}\\
& =\left(q^{x} E_{q, \varepsilon}+[x]_{q}\right)^{n}
\end{align*}
$$

with the usual convention about replacing $\left(E_{q, \varepsilon}\right)^{n}$ by $E_{n, q, \varepsilon}$.
By using (1.1), we note that

$$
\begin{equation*}
\left.\frac{d^{k}}{d t^{k}} F_{q, \varepsilon}(t, x)\right|_{t=0}=[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} \varepsilon^{n} q^{n}[n+x]_{q}^{k},(k \in \mathbb{N}) \tag{1.3}
\end{equation*}
$$

By (1.3), we are now ready to define the Hurwitz type of the twisted q-Euler zeta functions.

Definition 1.1. Let $s \in \mathbb{C}$ and $x \in \mathbb{R}$ with $x \neq 0,-1,-2, \ldots$. We define

$$
\begin{equation*}
\zeta_{q, \varepsilon}(s, x)=[2]_{q} \sum_{n=0}^{\infty} \frac{(-1)^{n} \varepsilon^{n} q^{n}}{[n+x]_{q}^{s}} \tag{1.4}
\end{equation*}
$$

Note that $\zeta_{q, \zeta}(s, x)$ is a meromorphic function on \mathbb{C}. A relation between $\zeta_{q, \varepsilon}(s, x)$ and $E_{k, q, \varepsilon}(x)$ is given by the following theorem.

Theorem 1.2. For $k \in \mathbb{N}$, we get

$$
\begin{equation*}
\zeta_{q, \varepsilon}(-k, x)=E_{k, q, \varepsilon}(x) . \tag{1.5}
\end{equation*}
$$

Observe that $\zeta_{q, \varepsilon}(-k, x)$ function interpolates $E_{k, q, \varepsilon}(x)$ polynomials at nonnegative integers.

2. Symmetric property of twisted q-Euler zeta functions

In this section, by using the similar method of $[1,2,3]$, expect for obvious modifications, we investigate some symmetric identities for twisted q-Euler polynomials and twisted q-Euler zeta functions. Let $w_{1}, w_{2} \in \mathbb{N}$ with $w_{1} \equiv 1$ $(\bmod 2), w_{2} \equiv 1(\bmod 2)$.

Theorem 2.1. For $w_{1}, w_{2} \in \mathbb{N}$ with $w_{1} \equiv 1(\bmod 2), w_{2} \equiv 1(\bmod 2)$, we have

$$
\begin{aligned}
& \sum_{i=0}^{w_{2}-1}[2]_{q^{w_{1}}}\left[w_{1}\right]_{q}^{s}(-1)^{i} \varepsilon^{w_{1} i} q^{w_{1} i} \zeta_{q^{w_{2}}, \varepsilon^{w_{2}}}\left(s, w_{1} x+\frac{w_{1} i}{w_{2}}\right) \\
& =\sum_{j=0}^{w_{1}-1}[2]_{q^{w_{2}}}\left[w_{2}\right]_{q}^{s}(-1)^{j} \varepsilon^{w_{2} j} q^{w_{2} j} \zeta_{q^{w_{1}}, \varepsilon^{w_{1}}}\left(s, w_{2} x+\frac{w_{1} j}{w_{2}}\right)
\end{aligned}
$$

Proof. Observe that $[x y]_{q}=[x]_{q^{y}}[y]_{q}$ for any $x, y \in \mathbb{C}$. In Definition 1.1, we derive next result by substitute $w_{1} x+\frac{w_{1} i}{w_{2}}$ for x in and replace q and ε by $q^{w_{2}}$ and $\varepsilon^{w_{2}}$, respectively.

$$
\begin{align*}
\zeta_{q^{w_{2}}, \varepsilon^{w_{2}}}\left(s, w_{1} x+\frac{w_{1} i}{w_{2}}\right) & =[2]_{q^{w_{2}}} \sum_{n=0}^{\infty} \frac{(-1)^{n} \varepsilon^{w_{2} n} q^{w_{2} n}}{\left[n+w_{1} x+\frac{w_{1} i}{w_{2}}\right]_{q^{w_{2}}}^{s}} \\
& =[2]_{q^{w_{2}}}\left[w_{2}\right]_{q}^{s} \sum_{n=0}^{\infty} \frac{(-1)^{n} \varepsilon^{w_{2} n} q^{w_{2} n}}{\left[w_{1} w_{2} x+w_{1} i+w_{2} n\right]_{q}^{s}} . \tag{2.1}
\end{align*}
$$

Since for any non-negative integer n and odd positive integer w_{1}, there exist unique non-negative integer r, j such that $m=w_{1} r+j$ with $0 \leq j \leq w_{1}-1$. So, the equation (2.1) can be written as

$$
\begin{align*}
& \zeta_{q^{w_{2}}, \zeta^{w_{2}}}\left(s, w_{1} x+\frac{w_{1} i}{w_{2}}\right) \\
& =[2]_{q^{w_{2}}}\left[w_{2}\right]_{q}^{s} \sum_{\substack{w_{1} r+j=0 \\
0 \leq j \leq w_{1}-1}}^{\infty} \frac{(-1)^{w_{1} r+j} \varepsilon^{w_{2}\left(w_{1} r+j\right)} q^{w_{2}\left(w_{1} r+j\right)}}{\left[w_{1} w_{2} r+w_{1} w_{2} x+w_{1} i+w_{2} j\right]_{q}^{s}} \tag{2.2}\\
& =[2]_{q^{w_{2}}}\left[w_{2}\right]_{q}^{s} \sum_{j=0}^{w_{1}-1} \sum_{r=0}^{\infty} \frac{(-1)^{j} \varepsilon^{w_{2}\left(w_{1} r+j\right)} q^{w_{2}\left(w_{1} r+j\right)}}{\left[w_{1} w_{2}(r+x)+w_{1} i+w_{2} j\right]_{q}^{s}}
\end{align*}
$$

In similarly, we can see that

$$
\begin{align*}
\zeta_{q^{w_{1}}, \varepsilon^{w_{1}}}\left(s, w_{2} x+\frac{w_{2} j}{w_{1}}\right) & =[2]_{q^{w_{1}}} \sum_{n=0}^{\infty} \frac{(-1)^{n} \varepsilon^{w_{1} n} q^{w_{1} n}}{\left[n+w_{2} x+\frac{w_{2} j}{w_{1}}\right]_{q^{w_{1}}}^{s}} \tag{2.3}\\
& =[2]_{q^{w_{1}}}\left[w_{1}\right]_{q}^{s} \sum_{n=0}^{\infty} \frac{(-1)^{n} \varepsilon^{w_{1} n} q^{w_{1} n}}{\left[w_{1} w_{2} x+w_{1} n+w_{2} j\right]_{q}^{s}}
\end{align*}
$$

Using the method in (2.2), we obtain

$$
\begin{align*}
& \zeta_{q^{w_{1}}, \varepsilon^{w_{1}}}\left(s, w_{2} x+\frac{w_{2} j}{w_{1}}\right) \\
& =[2]_{q^{w_{1}}}\left[w_{1}\right]_{q}^{s} \sum_{\substack{w_{2} r+i=0 \\
0 \leq i \leq w_{2}-1}}^{\infty} \frac{(-1)^{w_{2} r+i} \varepsilon^{w_{1}\left(w_{2} r+i\right)} q^{w_{1}\left(w_{2} r+i\right)}}{\left[w_{1} w_{2} r+w_{1} w_{2} x+w_{1} i+w_{2} j\right]_{q}^{s}} \tag{2.4}\\
& =[2]_{q^{w_{1}}}\left[w_{1}\right]_{q}^{s} \sum_{i=0}^{w_{2}-1} \sum_{r=0}^{\infty} \frac{(-1)^{i} \varepsilon^{w_{1}\left(w_{2} r+i\right)} q^{w_{1}\left(w_{2} r+i\right)}}{\left[w_{1} w_{2}(r+x)+w_{1} i+w_{2} j\right]_{q}^{s}}
\end{align*}
$$

From (2.2) and (2.4), we have

$$
\begin{align*}
& \sum_{i=0}^{w_{2}-1}[2]_{q^{w_{1}}}\left[w_{1}\right]_{q}^{s}(-1)^{i} \varepsilon^{w_{1} i} q^{w_{1} i} \zeta_{q^{w_{2}, \varepsilon^{w_{2}}}}\left(s, w_{1} x+\frac{w_{1} i}{w_{2}}\right) \\
& =\sum_{j=0}^{w_{1}-1}[2]_{q^{w_{2}}}\left[w_{2}\right]_{q}^{s}(-1)^{j} \varepsilon^{w_{2} j} q^{w_{2} j} \zeta_{q^{w_{1}}, \varepsilon^{w_{1}}}\left(s, w_{2} x+\frac{w_{2} j}{w_{1}}\right) . \tag{2.5}
\end{align*}
$$

Next, we derive the symmetric results by using definition and theorem of the twisted q-Euler polynomials.

Theorem 2.2. Let i, j and n be non-negative integers. For $w_{1}, w_{2} \in \mathbb{N}$ with $w_{1} \equiv 1(\bmod 2), w_{2} \equiv 1(\bmod 2)$, we have

$$
\begin{aligned}
& \frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{q}^{n}} \sum_{i=0}^{w_{2}-1}(-1)^{i} \varepsilon^{w_{1} i} q^{w_{1} i} E_{n, q^{w_{2}}, \varepsilon^{w_{2}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}\right) \\
& =\frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{q}^{n}} \sum_{j=0}^{w_{1}-1}(-1)^{j} \varepsilon^{w_{2} j} q^{w_{2} j} E_{n, q^{w_{1}}, \varepsilon^{w_{1}}}\left(w_{2} x+\frac{w_{2} j}{w_{1}}\right) .
\end{aligned}
$$

Proof. By substitute $w_{1} x+\frac{w_{1} i}{w_{2}}$ for x in Theorem 1.2 and replace q and ε by $q^{w_{2}}$ and $\varepsilon^{w_{2}}$, respectively, we derive

$$
\begin{align*}
& E_{n, q^{w_{2}}, \varepsilon^{w_{2}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}\right) \\
& =[2]_{q^{w_{2}}} \sum_{m=0}^{\infty}(-1)^{m} \varepsilon^{w_{2} m} q^{w_{2} m}\left[w_{1} x+\frac{w_{1} i}{w_{2}}+m\right]_{q^{w_{2}}}^{n} \tag{2.6}\\
& =\frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{q}^{n}} \sum_{m=0}^{\infty}(-1)^{m} \varepsilon^{w_{2} m} q^{w_{2} m}\left[w_{1} w_{2} x+w_{1} i+w_{2} m\right]_{q}^{n}
\end{align*}
$$

Since for any non-negative integer m and odd positive integer w_{1}, there exist unique non-negative integer r, j such that $m=w_{1} r+j$ with $0 \leq j \leq w_{1}-1$.

Hence, the equation (2.6) is written as

$$
\begin{align*}
& E_{n, q^{w_{2}, \varepsilon^{w_{2}}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}\right) \\
& \begin{array}{r}
=\frac{[2]_{q} w_{2}}{\left[w_{2}\right]_{q}^{n}} \sum_{\substack{w_{1} r+j=0 \\
0 \leq j \leq w_{1}-1}}^{\infty}(-1)^{w_{1} r+j} \varepsilon^{w_{2}\left(w_{1} r+j\right)} q^{w_{2}\left(w_{1} r+j\right)} \\
\quad \times\left[w_{1} w_{2} x+w_{1} i+w_{2}\left(w_{1} r+j\right)\right]_{q}^{n} \\
=\frac{[2]_{q} w_{2}}{\left[w_{2}\right]_{q}^{n}} \sum_{i=0}^{w_{1}-1} \sum_{r=0}^{\infty}(-1)^{w_{1} r+j} \varepsilon^{w_{2}\left(w_{1} r+j\right)} q^{w_{2}\left(w_{1} r+j\right)} \\
\quad \times\left[w_{1} w_{2}(x+r)+w_{1} i+w_{2} j\right]_{q}^{n} .
\end{array} \tag{2.7}
\end{align*}
$$

In similar, we have

$$
\begin{align*}
& E_{n, q^{w_{1}}, \varepsilon^{w_{1}}}\left(w_{2} x+\frac{w_{2} j}{w_{1}}\right) \\
& =[2]_{q^{w_{1}}} \sum_{m=0}^{\infty}(-1)^{m} \varepsilon^{w_{1} m} q^{w_{1} m}\left[w_{2} x+\frac{w_{2} j}{w_{1}}+m\right]_{q^{w_{1}}}^{n} \tag{2.8}\\
& =\frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{q}^{n}} \sum_{m=0}^{\infty}(-1)^{m} \varepsilon^{w_{1} m} q^{w_{1} m}\left[w_{1} w_{2} x+w_{2} j+w_{1} m\right]_{q}^{n}
\end{align*}
$$

and

$$
\begin{align*}
& E_{n, q^{w_{1}, \varepsilon^{w_{1}}}}\left(w_{2} x+\frac{w_{2} j}{w_{1}}\right) \\
& =\frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{q}^{n}} \sum_{\substack{w_{2} r+i=0 \\
0 \leq i \leq w_{2}-1}}^{\infty}(-1)^{w_{2} r+i} \varepsilon^{w_{1}\left(w_{2} r+i\right)} q^{w_{1}\left(w_{2} r+j\right)} \tag{2.9}\\
& \times\left[w_{1} w_{2} x+w_{1} i+w_{2}\left(w_{1} r+j\right)\right]_{q}^{n} \\
& =\frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{q}^{n}} \sum_{i=0}^{w_{2}-1} \sum_{r=0}^{\infty}(-1)^{w_{2} r+i} \varepsilon^{w_{1}\left(w_{2} r+i\right)} q^{w_{1}\left(w_{2} r+i\right)} \\
& \quad \times\left[w_{1} w_{2}(x+r)+w_{1} i+w_{2} j\right]_{q}^{n} .
\end{align*}
$$

It follows from the above equation that

$$
\begin{align*}
& \begin{array}{l}
\frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{q}^{n}} \sum_{i=0}^{w_{2}-1}(-1)^{i} \varepsilon^{w_{1} i} q^{w_{1} i} E_{n, q^{w_{2}}, \varepsilon^{w_{2}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}\right) \\
=\frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{q}} \frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{q}^{n}} \sum_{j=0}^{w_{1}-1} \sum_{i=0}^{w_{2}-1} \sum_{r=0}^{\infty}(-1)^{i+j} \varepsilon^{w_{1} w_{2} r+w_{1} i+w_{2} j} \\
\left.\quad \times q^{w_{1} w_{2} r+w_{1} i+w_{2} j}\left[w_{1} w_{2}(x+r)+w_{1} i+w_{2} j\right)\right]_{q}^{n} \\
=\frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{q}^{n}} \sum_{j=0}^{w_{1}-1}(-1)^{j} \varepsilon^{w_{2} j} q^{w_{2} j} E_{n, q^{w_{1}, \varepsilon^{w_{1}}}}\left(w_{2} x+\frac{w_{2} j}{w_{1}}\right) .
\end{array} .
\end{align*}
$$

From (2.8) and (2.9), the proof of the Theorem 2.2 is completed.
By (1.2) and Theorem 2.2, we have the following theorem.
Theorem 2.3. Let i, j and n be non-negative integers. For $w_{1}, w_{2} \in \mathbb{N}$ with $w_{1} \equiv 1(\bmod 2), w_{2} \equiv 1(\bmod 2)$, we have

$$
\begin{aligned}
& {[2]_{q^{w_{1}}} \sum_{k=0}^{n}\binom{n}{k}\left[w_{1}\right]_{q}^{k}\left[w_{2}\right]_{q}^{n-k} E_{n-k, q^{w_{2}}, \varepsilon^{w_{2}}}\left(w_{1} x\right) \sum_{i=0}^{w_{2}-1}(-1)^{i} \varepsilon^{w_{1} i} q^{(1+n-k) w_{1} i}[i]_{q^{w_{1}}}^{k}} \\
& =[2]_{q} w_{2} \sum_{k=0}^{n}\binom{n}{k}\left[w_{1}\right]_{q}^{n-k}\left[w_{2}\right]_{q}^{k} E_{n-k, q^{w_{1}}, \varepsilon^{w_{1}}}\left(w_{2} x\right) \sum_{j=0}^{w_{1}-1}(-1)^{j} \varepsilon^{w_{2} j} q^{(1+n-k) w_{2} j}[j]_{q^{w_{2}}}^{k} .
\end{aligned}
$$

Proof. After some calculations, we obtain

$$
\begin{align*}
& \frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{q}^{n}} \sum_{i=0}^{w_{2}-1}(-1)^{i} \zeta^{w_{1} i} q^{w_{1} i} E_{n, q^{w_{2}, \varepsilon^{w_{2}}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}\right) \\
& =\frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{q}^{n}} \sum_{i=0}^{w_{2}-1}(-1)^{i} \varepsilon^{w_{1} i} q^{w_{1} i} \sum_{l=0}^{n}\binom{n}{l} q^{(n-l) w_{1} i} E_{n-l, q^{w_{2}}, \varepsilon^{w_{2}}\left(w_{1} x\right)}\left[\frac{w_{1} i}{w_{2}}\right]_{q^{w_{2}}}^{l} \\
& =\frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{q}^{n}} \sum_{k=0}^{n}\binom{n}{k} E_{n-k, q^{w_{2}, \varepsilon^{w_{2}}}}\left(w_{1} x\right) \sum_{i=0}^{w_{2}-1}(-1)^{i} \varepsilon^{w_{1} i} q^{(1+n-k) w_{1} i}\left[\frac{w_{1}}{w_{2}}\right]_{q^{w_{2}}}^{k}[i]_{q^{w_{1}}}^{k} \\
& =\frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{q}^{n}} \sum_{k=0}^{n}\binom{n}{k}\left[\frac{w_{1}}{w_{2}}\right]_{q^{w_{2}}}^{k} E_{n-k, q^{w_{2}}, \varepsilon^{w_{2}}}\left(w_{1} x\right) \sum_{i=0}^{w_{2}-1}(-1)^{i} \varepsilon^{w_{1} i} q^{(1+n-k) w_{1} i}[i]_{q^{w_{1}}}^{k}, \tag{2.11}
\end{align*}
$$

and

$$
\begin{align*}
\frac{[2]_{q^{w^{w_{2}}}}^{\left[w_{2}\right]_{q}}}{w_{1}-1} \sum_{j=0}(-1)^{j} \varepsilon^{w_{2} j} q^{w_{2} j} E_{n, q^{w_{2}, \varepsilon^{w_{2}}}}\left(w_{2} x+\frac{w_{2} j}{w_{1}}\right) \\
=\frac{[2]_{q^{w_{2}}}^{[}}{\left[w_{2}\right]_{q}^{n}} \sum_{k=0}^{n}\binom{n}{k}\left[\frac{w_{1}}{w_{2}}\right]_{q^{w_{1}}}^{k} E_{n-k, q^{w_{1}, \varepsilon^{w_{1}}}\left(w_{2} x\right)} \tag{2.12}\\
\times \sum_{j=0}^{w_{1}-1}(-1)^{j} \varepsilon^{w_{2} j} q^{(1+n-k) w_{2} j}\left[j q_{w_{2}}^{k} .\right.
\end{align*}
$$

From (2.11), (2.12) and Theorem 2.2, we obtain that

$$
\begin{aligned}
& {[2]_{q^{w_{1}}} \sum_{k=0}^{n}\binom{n}{k} } \frac{1}{\left[w_{1}\right]_{q}^{n-k}\left[w_{2}\right]_{q}^{k}} E_{n-k, q^{w_{2}}, \varepsilon^{w_{2}}}\left(w_{1} x\right) \\
& \times \sum_{i=0}^{w_{2}-1}(-1)^{i} \varepsilon^{w_{1} i} q^{(1+n-k) w_{1} i}[i]_{q^{w_{1}}}^{k} \\
&=[2]_{q^{w_{2}}} \sum_{k=0}^{n}\binom{n}{k} \frac{1}{\left[w_{1}\right]_{q}^{k}\left[w_{2}\right]_{q}^{n-k}} E_{n-k, q^{w_{1}, \varepsilon^{w_{1}}}\left(w_{2} x\right)} \\
& \times \sum_{j=0}^{w_{1}-1}(-1)^{j} \varepsilon^{w_{2} j} q^{(1+n-k) w_{2} j}[j]_{q^{w_{2}}}^{k}
\end{aligned}
$$

Hence, we have above theorem.
By Theorem 2.3, we obtain the interesting symmetric identity for twisted q-Euler numbers in complex field.
Corollary 2.4. For $w_{1}, w_{2} \in \mathbb{N}$ with $w_{1} \equiv 1(\bmod 2), w_{2} \equiv 1(\bmod 2)$, we have

$$
\begin{aligned}
& {[2]_{q^{w_{1}}} \sum_{k=0}^{n}\binom{n}{k}\left[w_{1}\right]_{q}^{k}\left[w_{2}\right]_{q}^{n-k} E_{n-k, q^{w_{2}, \varepsilon^{w_{2}}}} \sum_{i=0}^{w_{2}-1}(-1)^{i} \varepsilon^{w_{1} i} q^{(1+n-k) w_{1} i}[i]_{q^{w_{1}}}^{k}} \\
& =[2]_{q^{w_{2}}} \sum_{k=0}^{n}\binom{n}{k}\left[w_{1}\right]_{q}^{n-k}\left[w_{2}\right]_{q}^{k} E_{n-k, q^{w_{1}}, \varepsilon^{w_{1}}} \sum_{j=0}^{w_{1}-1}(-1)^{j} \varepsilon^{w_{2} j} q^{(1+n-k) w_{2} j}[j]_{q^{w_{2}}}^{k}
\end{aligned}
$$

References

1. J.Y. Kang, C.S. Ryoo, On Symmetric Property for q-Genocchi Polynomials and Zeta Function, Int. Journal of Math. Analysis 8 (2014), 9-16.
2. Yuan He, Symmetric identities for Carlitz's q-Bernoulli numbers and polynomials, Advances in Difference Equations 246 (2013), 10 pages.
3. D. Kim, T. Kim, S.-H. Lee, J.-J. Seo, Symmetric Identities of the q-Euler Polynomials, Adv. Studies Theor. Phys. 7 (2014), 1149-1155.
4. T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. 14 (2007), 15-27.
5. B.A. Kupershmidt, Reflection symmetries of q-Bernoulli polynomials, J. Nonlinear Math. Phys. 12 (2005), 412-422.
6. C.S. Ryoo, On the Barnes type multiple q-Euler polynomials twisted by ramified roots of unity, Proc. Jangjeon Math. Soc. 13 2010, 255-263.
7. C.S. Ryoo, A note on the weighted q-Euler numbers and polynomials, Advan. Stud. Contemp. Math., 21 (2011), 47-54.
8. C.S. Ryoo, Some Identities of Symmetry for Carlitz's Twisted q-Euler Polynomials Associated with p-Adic q-Integral on \mathbb{Z}_{p}, Int. Journal of Math. Analysis 9 (2015), 1747 1753.
9. C.S. Ryoo, Analytic Continuation of Euler Polynomials and the Euler Zeta Function, Discrete Dynamics in Nature and Society 2014 (2014), Article ID 568129, 6 pages.
10. C.S. Ryoo, A Note on the Reflection Symmetries of the Genocchi polynomials, J. Appl. Math. \& Informatics 27 (2009), 1397-1404.
N.S. Jung received Ph.D. degree from Hannam University. Her research interests are analytic number theory and p-adic functional analysis.
Department of Mathematics, Hannam University, Daejeon, 306-791, Korea.
e-mail: jns4235@nate.com
C.S. Ryoo received Ph.D. degree from Kyushu University. His research interests focus on the numerical verification method, scientific computing and p-adic functional analysis.
Department of Mathematics, Hannam University, Daejeon, 306-791, Korea.
e-mail: ryoocs@hnu.kr

[^0]: Received May 25, 2015. Revised July 27, 2015. Accepted August 3, 2015. ${ }^{*}$ Corresponding author.
 (c) 2015 Korean SIGCAM and KSCAM.

