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1. Introduction

The Euler polynomials and numbers possess many interesting properties in
many areas of mathematics and physics. Many mathematicians have studied in
the area of the g-extension of the Euler numbers and polynomials (see [3-10]).

Recently, Y. Hu studied several identities of symmetry for Carlitz’s g-Bernoulli
numbers and polynomials in complex field (see [2]). D. Kim et al. [3] derived
some identities of symmetry for Carlitz’s ¢-Euler numbers and polynomials in
complex field. J.Y. Kang and C.S. Ryoo investigated some identities of symmetry
for g-Genocchi polynomials (see [1]). In [8], we obtained some identities of
symmetry for Carlitz’s twisted ¢-Euler polynomials associated with p-adic ¢-
integral on Z,. In this paper, we establish some interesting symmetric identities
for twisted g-Euler zeta functions and twisted g-Euler polynomials in complex
field. If we take ¢ = 1 in all equations of this article, then [3] are the special
case of our results. Throughout this paper we use the following notations. By
N we denote the set of natural numbers, Z denotes the ring of rational integers,
Q denotes the field of rational numbers, C denotes the set of complex numbers,
and Zy = NU{0}. We use the following notation:

1—-4"
[.T]q— 1_q

(see [1,2,3,4]).
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Note that lim,_,1[z] = x. We assume that ¢ € C with |¢| < 1. Let € be the
pN-th root of unity. Then the twisted ¢-Euler polynomials E,, , . are defined by
the generating function to be

F,-(t,x) Z 1)"g"emeletmla ZEnqs o (1.1)
n=0 n=0 !

When 2 =0, E, 4. = Ep ¢:(0) are called the twisted ¢-Euler numbers. By (1.1)
and Cauchy product, we have

Epge(z) = En: (l)q “Epgelrly” ! (1.2)

=0
= (¢"Eqe + [ﬂq)n

with the usual convention about replacing (E, c)" by Ey, q...
By using (1.1), we note that

k )
Pt =B el Gen. 1)
t= n=0

By (1.3), we are now ready to define the Hurwitz type of the twisted g-Euler
zeta functions.

Definition 1.1. Let s € C and z € R with x #0,—1,—-2,.... We define

o0

Cae(s, ) Z n+w . (1.4)

Note that (4¢(s,) is a meromorphic function on C. A relation between
Cq.e(s,x) and Ej q.(x) is given by the following theorem.

Theorem 1.2. For k € N, we get
Cae(—=k, @) = B q,e (). (1.5)

Observe that (;.(—k,z) function interpolates Ej 4 .(x) polynomials at non-
negative integers.

2. Symmetric property of twisted ¢-Euler zeta functions

In this section, by using the similar method of [1, 2, 3], expect for obvi-
ous modifications, we investigate some symmetric identities for twisted g-Euler
polynomials and twisted g-Fuler zeta functions. Let wy,ws € N with w; =1
(mod 2), we =1 (mod 2).
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Theorem 2.1. For wy,ws € N with wy =1 (mod 2), we =1 (mod 2), we have

w2 1
. ; : . w1
3 g [r ] (1) g s ( wio + )

w
i=0 2

wy—1
= Z [2]qw2 [’LUQ]Z(—l)jngjqwﬂqul’Ewl (3 Wox + U)
7=0

w2

Proof. Observe that [zyl, = [z],,[y]q for any x,y € C. In Definition 1.1, we

derive next result by substitute wiz + 7 for z in and replace ¢ and ¢ by ¢*
and £"2, respectively.

oo

wlz (71)n6w2nqw2n
wy gwy (S, WX + — ) = [2|w
Cq 2. 2( 1 w2) Hq2;[n+w1x+w”]qw2

o0

= [2}qw2 [UBE Z (_1)n€w27?qw2n

= [wiwaz + wii + wanly

Since for any non-negative integer m and odd positive integer wi, there exist
unique non-negative integer 7, j such that m = wyr+j with 0 < j <w; — 1. So,
the equation (2.1) can be written as

w1l
CqW27(w2 <S w1 + w12>
2] en [t02]? i (_1)w1r+j5wz(w1r+j)qw2(wlr+j)
= wa | W2 . .
qvz | Walq i [wiwar + wiwar + w1 + wajl] (2.2)
0<j<w;—1
[2] wlz:li l)jgwg(w1r+])qw2(wlr+])
= w w2
" == [wiwa(r + ) + wii + wagly

In similarly, we can see that

- n gW1n gwin
oy q
Cawr,ewn <5 wa + ) = E : wzj]

n + wox + o (2 3)

1)rewingwin
= [2gws 1] z e
= w1w2x+w1n—|—w2]]
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Using the method in (2.2), we obtain

woi
Cqw1 ew1 (3,102117 + 2])

wq

(_l)wgr-‘rzgwl(wgr—i-z)qwl(wgr—i-z)
el > ST
sy [wrwar - wiwew + Wi 4 wajlf (2.4)
0<i<ws—1
wzfloo

(_1)1'6101 (w2r+i)qw1 (war+i)
= Bl lnli D 2 fr v @ Tt
‘=0 r—p [W1W2 12T wajlg

From (2.2) and (2.4), we have

wo—1 .
Z (2]gw [wl]Z(*l)%wﬂqw”quz,sw <5, w1x + 1)

: .
=0
wi—1 . (25)
= 3 2] [l (— )77 g2 ¢ <87W N 2])
=0 w
0

Next, we derive the symmetric results by using definition and theorem of the
twisted g-Euler polynomials.

Theorem 2.2. Let i,j and n be non-negative integers. For wy,ws € N with
wy; =1 (mod 2), we =1 (mod 2), we have

'LU2—1

R
a4 =0
2y jgwai gwai w2

Proof. By substitute wyx + % for « in Theorem 1.2 and replace ¢ and € by ¢*2
and "2, respectively, we derive

wli
By qoz e (wlx + >

wa
= [2] w 3 (_1)m wam wam + w n "
qv2 € q w1T " m (2.6)
m=0 g2
[2]61“’2 s m _wam  Wam . n
— [wﬂg z_:o(_l) g2 q 2 [w1w2x+wlz+w2m]q_

Since for any non-negative integer m and odd positive integer w;, there exist
unique non-negative integer r,j such that m = wir + 7 with 0 < j < w; — 1.
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Hence, the equation (2.6) is written as

wli
Ep gz gvs | w12 + —
w2

o0

_ [Q]q“’? Z (_1>w1r+j5w2(w1r+j)qwz(w1r+j)

[wﬂg wiT+j=0
0<j<wi—1 (27)

X [wywex + wii + wa(wir + j)]f}

wi—1 oo

Z Z w17'+j5w2(w17'+j)qw2(w1 r+3)

n
q =0 r=0

X [wiwa(x + 1) +wii + wajly

In similar, we have

n g1 w1 <u}2x =+ )

S . n
m_wim wim w2)
= [2]4=1 Z (=1)mermq [ng + o + m} (2.8)
m=0 g1
2]y <
w1 m_wim wim . n
= i Z(—l) et Mg "M wiwax 4+ waj 4+ wim]y
[wl]q m=0

and

E’I’L,qwl LEWL <’u}2x + 2‘7>

w1
_ M i (_1)w2r+i€w1(wzr+i) w1 (war+j)
= [’wﬂg . q
war+1=0
0<i<wy—1 (2.9)
X [wiwer + wii + wa(wir + j)Iy
wa—1 oo
_ [2lgwr Z Z w2r+i€w1(w2r+i)qw1(w2r+i)
iy = =

X [wiwa(x + 1) +wyii + wajly -
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It follows from the above equation that

[2}q,w1 wil(il)iawliqwliE wy cwy | WX + %
[wl]g part n,qw=,¢e W

2y Plye 35

Z Z(il)i+j€w1w2r+w1i+ng
[wi]g [woly = = = (2.10)

% qw1 war+wiitwaj [

wywa (@ +7) + wii + waf)]y

wi—1 ‘
[Q]q“’2 O woj
= @ Z (_1)]6 2]q 2‘]En,qw175“’1 Wao XL + wil .
7=0
From (2.8) and (2.9), the proof of the Theorem 2.2 is completed. 0

By (1.2) and Theorem 2.2, we have the following theorem.

Theorem 2.3. Let i,j and n be non-negative integers. For wi,ws € N with
wy; =1 (mod 2), we =1 (mod 2), we have

n wo—1
n — i 1 — i -
s 32 () ol s s ) 3 (e i

k=0 1=0

n w1 —1
n — ] _woj n—k)wajr -
e 3 (1o o) 3 (D

k=0 j=0

Proof. After some calculations, we obtain

wo—1
[2]gw1 < i swid wii w1t
— E -1 ! Y B, qwa gw —
[wl}g gt ( ) C q g2, 2 w1z + Wa

wo—1 n

_ [ ' i_wii wid n (n—lwii w1t !
T [walz 2 (1), )4 En-tqva.cvs (o) | 20 42

=0 2

i=0
[2]g1 — (n = i_wyi (14n—k)wii | W1 r 1k
= [wl}” Z k En_k’qwz’ewz (wlax) Z (—1) 13 q w—2 [’L]qwl
9 k=0 i=0 qw2
2w ~= ) [wr F > vz s (1012) wil(_l)igwli (+n—Rpunip
- [wl}g k=0 k w2 qw2 n—k.q"2,e2 ! i—o q q1y
(2.11)
and
[Z}qWQ wil(_l)jeu&jqwsz ws gws | Wor + ij
wly & e o
_ [2lga 2": (n) {Uﬂr o (woz) (2.12)
= _— —k, w17 wy 2 .
[w2]g Pt k_ wo o n q )
wi—1

X Y (m1yewiqitnmhwilL,,
§=0
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From (2.11), (2.12) and Theorem 2.2, we obtain that

[2} w1y E ( > n_iEn—k, wy gwa (U}lx)
! k=0 k) [wi] Hwa)k !

q [w2]q
w2 —

1
% Z (_1)i5w1iq(1+n7k)w1i ml;wl
=0

= [2](11“2 Z

n 1
T m Bnkger v (w21)
<k> [wy]E[wp ]y~ E

k=0
wlfl
~ Z (71)jngjq(1+nfk)wzj[j]l;w2
§=0
Hence, we have above theorem. O

By Theorem 2.3, we obtain the interesting symmetric identity for twisted
g-Euler numbers in complex field.

Corollary 2.4. Forwy,ws € N withw; =1 (mod 2), we =1 (mod 2), we have

wo—1

- n _ i _wit n—k)wiif;
[2]gwn Z <k> [W]’J[W]Z kEnfkqu,Ew? Z (=1)e* gtk [l]swl
k=0 i=0
n n wi—1
= [2]qu- (k) (w1 * [wal§ Bn g cws Z (—1)igwad gtn=kywaifsk,
k=0 =0
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