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SOME NEW RESULTS ON THE RUDIN-SHAPIRO
POLYNOMIALS |

M. TAGHAVI* AND H. K. AZADI

ABSTRACT. In this article, we focuss on sequences of polynomials with
{£1} coefficients constructed by recursive argument that is known as
Rudin-Shapiro polynomials. The asymptotic behavior of these polynomi-
als defines as the ratio of their 2¢-norm with 2-norm to be dominated by
some number depending on g or "the best” by an absolute constant. In
this work we first show the conjecture holds for some finite numbers of m
and then introduce a technique that give the result for any positive odd
integer m whenever it holds for all pervious even numbers.
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1. Introduction

The Golay polynomial pairs (A(z), B(z)) of degree m (see [4]) are of the
form | |

A(z) = Zakzk , B(z)= Zbkzk,
k=0 k=0
where ar = *1,ar = %1, and they satisfy for all real ¢t

|A(e®)]® + |B(e™)|? = 2m + 2. (1)
A special cases of these polynomials are the Rudin-Shapiro polynomials, [7].
They are defined recursively by the following formulas:

Prsa(e) = P(e) + €27 Qua(e)
Qm+1(eit) — Pm(eit) _ ei2thm(eit)’
where Po(e*) = Qo(e”) =1, m >0and t € R.
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We start from some useful definitions and theorems concerning basic proper-
ties of Rudin-Shapiro polynomials in this matter as a base for our main result.
In the additional references, one finds most of other results and properties on
these polynomials. In what follows, unless it mention otherwise, all polynomials
are Rudin-Shapiro. In the rest of the article, all z satisfy |z| = 1.

Theorem 1. For |j| < 2m,m(j) =15:n(j) (this means that the Fourier
coefficient of P, at j equals the Fourier coefficient of P41 at 7).

Proof. We have Py, 11(e*) = Ppn(e®) 4+ €2 'Qpm (e"t) and deg(e?” tQm(e*)) >
2™. So for all j such that |j| < 2™

Pri1(i) = Pn(j) + €271Qum(e)(j) = Pa(j)-
[
It’s clear from the above theorem that a Rudin-Shapiro polynomial P, has
coefficients 1, without gaps. The first 2™ coeflicients of P, are identical
with those of P,, and these coefficients do not depend on m. Hence there exist
sequences {(m}oo_g, {Mm}oo_, both take only the values of +1 and —1 such

that
- 2™ _ 1 M1

Pr(2) = ch , Qm(2) = Znn

There is a conjecture that 1f (n and n, (1 <n< 2”" — 1) are coefﬁc1ents of

polynomials P,, and (},,, then 22 ~1 Cnn = 0. An essential relation between
polynomials P,,’s and Q,,’s is in the next theorem.

Theorem 2. For every posttive integer m we ha'ue

(i) |1 Pmllz = |Qmll2 and
(1) Pm(2)|% + |Qm(2)|* = 2™,

Proof. To show (%), by simple calculation we see that

I-Pm!2 = IPm—1|2- \+ ZRC( )PQO 1 + Ilez

2ml

and
2m -1

|Qm'2 IPm 1‘2 QRE( )PQO 1+ |Qm|2

L o |
S0 |Pm|®—|Qm|? = 4Re(2?" I)PQO 1. Smce/ Re(2%"" )PQO , vanish
0

to zero, integrating of two side of pervious equation proves (3).
For (i%) we use induction. It’s clear that the theorem holds for m = 0. Assume
it holds for m > 1, then by 31mple calculation we find that |Pny1(2)|? +

Qma1(2) = 2(|Pa(2) + 1Qm(2)2) = 2 x 2™ = 27+, O

Note that each F,,4;, has twice as 'm'a,ny terms as P,,, and therefqre the_se
polynomials are generated by a simple append rule. The ingenuity of these
polynomials is the combination of fixed sized coeflicients and the alternating
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signs in the recursive construction of the Rudin-Shapiro polynomials. Accord-
_ o™ __1 |
ing to Parseval’s Theorem, the former property gives | Pn|]3 = Z (£1)% = 2"‘

0
(as each P is the Fourier transform of sequence numbers +1 or —1). The norm

that we used here is the usual norm and it will be for the rest of this article.
That is, if P is a complex polynomial and ¢ a positive real number, then

1Pllq = (% /0% IP(eit)lth) e

Pllico = li Pllg.
IPlleo = lim P

We also define

The relation between norms of polynomials P,,(z) and Q. (z) has an im-
portant role to this article. Up to now, in the last theorem, we showed that
2-norm of these polynomials are equal. But for the general g-norm case, the
following theorem give us an elegant result.

Theorem 3. ||Pnll; = ||Qmllq holds for all g eN.

Proof. 1t suffices to show that
_ m m_ 1
Qnz) = ()", (1) ®

for every m > 0. Clearly (2) holds for m = 0 and m = 1. Assume that (2)
holds for any m > 1. Then | |

(_1)m+lz(2’n+l_l)Pm+l (_%)
m+1 ], 1 ‘l’rl. 1
= (-7 [Pm( -3) A (- —)]

Z Z

=(—1)m+1z<2”‘“-—1>[( ~1)"Qm ()/z (2™ -1)

+z(“2"‘)(—-1)m( - -1—)2m_1Pm(z)]

- z
= Pn(2) — 2% Qm(2) = Qm1(2). |
Thus (2) holds for m + 1 which complete the proof. | O

3. Asymptotic behavior

“P “2q
N Prll2

( as probably limit point of {A(m,q)}m,q when m — +o0).

Notation. For m,q € N, we consider two sequences A(m,q) = and

29
+ 1

Alg) = % ;
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The asymptotic behavior of Rudin-Shapiro polynomials is the ratio of their
2¢-norm and 2-norm, i.e.,

“1 m||2q 24
(“L, Q) ”P ”2 q 1 (Q)

In thi_s_articl'e we focuss on those ¢’s that satisfy the asymptotic Ibe'ha_viqr. We
begin to sate theorems that discuss the behavior on the norms of Rudin-Shapiro

polynomials and then find some upper and lower bound for their norms.
2m._1 :

Since || Py |3 = Z (£1)2 = 2™, by Cauchy-Schwartz inequality we have
O .

0 1 27 ) 1 27 ) ﬁ 2n ';1; 0
Pm = — Pm dt < — Pm 9 1P - Pm ’
1Pally = 52 [ 1Pwae < o ([ 1PmPe) " ([ 17)" = 1w,

1 | | o
where 7 + - = 1. Since ||Pn||3 tends to infinity when m — oo, the above
| " ) |

inequality implies that ||Pm||§g also tends to infinity.

Theorem 4. If g € N is fired, Then for everym € N,
(i) A(m,q) = O(||Pm]l2) and
(i1) 1 < A(m,q) < V2.

2™ 1
Proof. For (i), note that P,,(e*) = Z (ne™ which yields
0
I 1 2 _ 1 oAy 21 2q
.Pm 2q _ - P, it 2th=_ "nm.t dt
1Pnlfy = o [Pt = o[]S
0
1 2r /2™ —1 2q ' |
—_— : ' 2mq __ 4q — 2q\2
< 2 (zo; |<n1) dt < P70 = || P = (| Pll20)
So, ||l| 5 |||l2 2 < ||Pm]]2, this proves one side of above inequality. For the left
m|i{2 :

side in (i%), note that

1 27 . | 1 27r. . '}; 27 %}
IPmll? = — |Pm(e=t)|2dt5—( / |Pm(e‘t)|2th) ( / lpdt)
2 \Jo 0

27T0

< Vo ( / i |Pm|2q) %=_ 1Pl

I:IP |:|2q > 1. For the right side in (i1), since |P,(2)|? < |Pm(2)]? +
mi|2 .

|Q@m(2)]? = 2™*!, we have |Pp,(z)] < v/2 x 2% and this is a uniform bound for
P,,. Thus

Therefore
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[Pmll3g Pl
lim A%(m,q) = lim g = 1o < 9.
e 4 MO = IR 7 = TR
Hence the proof is complete. - .

Theorem 5. Suppose that for every p,q € N, lim A(m,q) = A(q). Then

A>1, if p<uy;
lim A(m, g) =<¢ A<1, if p>gq
m—oo A(m, p) A=1, if p=gq.

Proof. First note that ||Ppllz = 2% (# 0). So

im Ama) o [Pmllg [Pl

m—+oo A(mn, p) m—+oo [|Ppllz  m—+oo [ Prllgp
24 2q X 2 2]3
Vq+1 Dp+1'
%/pF 1 |

One can easily observe that the theorem follows from the fact that if f(z) =

(1+ z)% for z > 0, then log f(z) = 1 log(1 + z) and hence

2x

f! -1 1
L = los(l- —
7 222 P81 +2) = o=

—-1,1 1

= —(=1 1 —) < 0.
2z (g 08+ )+ = 7)
This proves our theorem. | g

It’s clear that the asymptotic behavior of Rudin-Shapiro polynomials holds
for ¢ = 1. In the following theorem we show that it holds for ¢ = 2.

Theorem 6. lim A(m,2) = A(2) = -4-
m—oo 3
- o 1Pmll 4 & S
Proof. We show that lim 7 = = Simple calculation yields
mreo |[Pallf 3 _
Pl | @[ = |Poi]* + [@mor[* — 2Re (™ P3°Q% ). (3)
Now assume that | -
tm = 5r [ [1Pm(@)N* + 1@m(e)]*] dt = 21|l (4)

Since polynomials P2,_; and QZ,_, have degree 2™ — 1, integral of that real
part in (3) must be zero. So integrating both sides of (3) yields
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2
Im-1= _1_/ IPmllem|2dt- |
2T 0

By (1) we have |Pp|4 + |Qm|? + 2| P |?|Qm|? = 22™F2.
Thus the following recursive formula is concluded

T + 2Ty = 222, - (5)
On the other hand
%(22"‘*2)_— 2™ < g < §(22m+2) +2™  meNU{0} (6)

To show this, note that z¢ = 2, since P; = Q¢ = 1 and hence (6) holds for

m = 0. Assume that (6) hold for m — 1 then by (5), m-1 = 2°™*! — 22 and
g(zm) —mTh <t %(2"‘) +2m

which is (6). Now as 2;::“ = H};:IE, we have

This proves Theorem. - [

In the following theorem, using the fact that the asymptotic behavior holds
for ¢ =1 and for ¢ = 2, we’ll show that it holds for ¢ = 3.

Theorem 7. lim A(m,3) = A(3) = V2.

Proof.
1 27 '-
Pl = o [ IPa(e®) Pt
1 027!' ]
= 5 ) @ = 1Qm(eP)at

- P g g - 3x22‘m+”||czm||2-||czmn6 |
Since ||Pn|lq = ||@ml|q, for all ¢ € N, we have
21|Prml[g = 251 + 3 5 2™+ | P — 3 22.‘*“+_"||ng|%- :

On the other hand ||P,||3 = ||Qml|5 = E (+£1)2 = 2™ implies that
-; . . . :. . ' 0 ) :_ . e
6 3m+42 m 4 ' .22m+1_ Pm 2

S moe 27 Tmoco DM[[Pnllf meeo 22| Pl

Therefore hmh_;oo ”}P;HG =\6/§
nli2.
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Thus, theorem is proved. .

Up to now, we have shown that the asymptotic behavior holds for ¢ = 1,2, 3.
But, if we want to prove for ¢ = 5, we need to assume it holds for ¢ = 2,4.

However the ¢ = 2 case was shown. Therefore we only need to assume the
behavior holds for g = 4.

Theorem 8. If lim A(m,4) = A(4), then lim A(m,5) = A(5).

10
Proof. We must show that lim M = 19
n—oo ||Pm|l3” 3
1 1 [ ity |10
IIPm|I13 - Sy . |Pm(ezt)|1 dt
1 27 .
= 5| @ - 1QuP)
5 1 2
= S vriciem i ([T Qu(ene e
0 2m Jo

5
= —lQmllIS+ D (-1 2™ Qn 551,
1 | | |

Since [|Prlly = [|Qmlly for all g € N,

5 mji{|p ||2(5*j)
1Pl s i) 5gi-1 i 2 Hmlla—)
lim =) (-1)65-9¢%9-1 lim . —~.
m—c0 || Pra 30 Z T mee | PR Pl
Now, Theorems 6, 7, and the hypothesis of this theorem implies that
1P 160 16
lim —= =16—-40+ — — 40+ 16 = —.
AT S T

O

Our main goal is to show that the asymptotic behavior is true for any' odd
positive integer, whenever it is true for all its previous even positive integers.

Theorem 9. Let q be a positive odd integer and suppose that for every even
n < g we have lim A(m,n) = A(n). Then lim A(m,q) = A(g).

mMm—o0

Proof. Let g be an odd number and let us first suppo:se that lim A(m,n) =
d TM—00

A(n) for all positive integers n less than g. Then

2m o
1Pa]2 = 51; /0 Py ()29
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1 27 - ;
= o [ @™ - 1Qm(e Pyt
q 1 2m
— Z( 1)e- chz(m+1)1 / 1Qm(e®) 29 gt ) .
| 5 o |
Since ||Pn||q = ||@ml|q for all ¢ € N U {0}, we have
q .
_‘. m . 2 —_a
1Pmllzg = D 2(=1)*/CI2 D Bl )
Hence
2(m—j)
1Pl l2g : [1Prmla(g-5)
2 lim 1 = 1-IC? lim 2(m+Yi el
T TN o

The last equality comes from well known fact Z

6.

7.

m 2(0‘“.7)

= Z( 1'? JC‘?2J 1 lim 2 J”P"n||2(qr —7J)
oo 2

m=oo || P |37 9| P, | |3

: j 29 2
- ;( D = T )
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