• Title/Summary/Keyword: Pseudo-spectral method

Search Result 44, Processing Time 0.057 seconds

A Study On Arbitrary Artificial Earthquake Acceleration Generation -Based On Design Response Spectrum of Arbitrary Damping Value- (임의의 인공지진 가속도 발생에 관한 연구 -설계응답 스펙트럼에 기초하여 -)

  • 우운택;김영문;노재선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.5-10
    • /
    • 1989
  • In this study, the basic concept of design response spectrum is briefly revi-ewed. To generate the artificial earthquake acceleration, the method of superpo-sition of cosine waves is used. Theoretical developments using F.F.T. and spect-ral density function are compared. The amplitude was derived by use of the peak factor and the phase angle is d-erived by use of Monte Carlo simulation. To smoothen the match, the calculated pseudo velocity respon-se spectrum is compared with input pseudo velocity response spectrum at a set of control frequencies. With the modified spectral density function, a new acceleration and pseudo velocity response spectrum are generat-ed.

  • PDF

Application of the Chebyshev-Fourier Pseudo spectral Method to the Eigenvalue Analysis of Circular Mindlin Plates with Free Boundary Conditions

  • Lee, Jinhee
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1458-1465
    • /
    • 2003
  • An eigenvalue analysis of the circular Mindlin plates with free boundary conditions is presented. The analysis is based on the Chebyshev-Fourier pseudospectral method. Even though the eigenvalues of lower vibration modes tend to convergence more slowly than those of higher vibration modes, the eigenvalues converge for sufficiently fine pseudospectral grid resolutions. The eigenvalues of the axisymmetric modes are computed separately. Numerical results are provided for different grid resolutions and for different thickness-to-radius ratios.

Absolute Radiometric Calibration for KOMPSAT-3 AEISS and Cross Calibration Using Landsat-8 OLI

  • Ahn, Hoyong;Shin, Dongyoon;Lee, Sungu;Choi, Chuluong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.291-302
    • /
    • 2017
  • Radiometric calibration is a prerequisite to quantitative remote sensing, and its accuracy has a direct impact on the reliability and accuracy of the quantitative application of remotely sensed data. This paper presents absolute radiometric calibration of the KOMPSAT-3 (KOrea Multi Purpose SATellite-3) and cross calibration using the Landsat-8 OLI (Operational Land Imager). Absolute radiometric calibration was performed using a reflectance-based method. Correlations between TOA (Top Of Atmosphere) radiances and the spectral band responses of the KOMPSAT-3 sensors in Goheung, South Korea, were significant for multispectral bands. A cross calibration method based on the Landsat-8 OLI was also used to assess the two sensors using near simultaneous image pairs over the Libya-4 PICS (Pseudo Invariant Calibration Sites). The spectral profile of the target was obtained from EO-1 (Earth Observing-1) Hyperion data over the Libya-4 PICS to derive the SBAF (Spectral Band Adjustment Factor). The results revealed that the TOA radiance of the KOMPSAT-3 agree with Landsat-8 within 5.14% for all bands after applying the SBAF. The radiometric coefficient presented here appears to be a good standard for maintaining the optical quality of the KOMPSAT-3.

ACCELERATION OF ONE-PARAMETER RELAXATION METHODS FOR SINGULAR SADDLE POINT PROBLEMS

  • Yun, Jae Heon
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.691-707
    • /
    • 2016
  • In this paper, we first introduce two one-parameter relaxation (OPR) iterative methods for solving singular saddle point problems whose semi-convergence rate can be accelerated by using scaled preconditioners. Next we present formulas for finding their optimal parameters which yield the best semi-convergence rate. Lastly, numerical experiments are provided to examine the efficiency of the OPR methods with scaled preconditioners by comparing their performance with the parameterized Uzawa method with optimal parameters.

The most unstable case in plane Poiseuille flow on transition by using pseudospectra method (Pseudospectra를 이용한 평행 평판 사이 유동에서 가장 불안정한 경우)

  • Choi Sangkyu;Chung Myung Kyoon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.691-694
    • /
    • 2002
  • The most unstable situation of laminar plane Poiseuille flow for transition to turbulence is investigated by using a pseudo-spectral method. A number of various disturbance modes are tested and it is found that the flow is the most unstable when it is disturbed by an oblique wave with an angle of $29.7^{\circ}$.

  • PDF

Study of Spectral Reflectance Reconstruction Based on an Algorithm for Improved Orthogonal Matching Pursuit

  • Leihong, Zhang;Dong, Liang;Dawei, Zhang;Xiumin, Gao;Xiuhua, Ma
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.515-523
    • /
    • 2016
  • Spectral reflectance is sparse in space, and while the traditional spectral-reconstruction algorithm does not make full use of this characteristic sparseness, the compressive sensing algorithm can make full use of it. In this paper, on the basis of analyzing compressive sensing based on the orthogonal matching pursuit algorithm, a new algorithm based on the Dice matching criterion is proposed. The Dice similarity coefficient is introduced, to calculate the correlation coefficient of the atoms and the residual error, and is used to select the atoms from a library. The accuracy of Spectral reconstruction based on the pseudo-inverse method, Wiener estimation method, OMP algorithm, and DOMP algorithm is compared by simulation on the MATLAB platform and experimental testing. The result is that spectral-reconstruction accuracy based on the DOMP algorithm is higher than for the other three methods. The root-mean-square error and color difference decreases with an increasing number of principal components. The reconstruction error decreases as the number of iterations increases. Spectral reconstruction based on the DOMP algorithm can improve the accuracy of color-information replication effectively, and high-accuracy color-information reproduction can be realized.

Criteria for processing response-spectrum-compatible seismic accelerations simulated via spectral representation

  • Zerva, A.;Morikawa, H.;Sawada, S.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.341-363
    • /
    • 2012
  • The spectral representation method is a quick and versatile tool for the generation of spatially variable, response-spectrum-compatible simulations to be used in the nonlinear seismic response evaluation of extended structures, such as bridges. However, just as recorded data, these simulated accelerations require processing, but, unlike recorded data, the reasons for their processing are purely numerical. Hence, the criteria for the processing of acceleration simulations need to be tied to the effect of processing on the structural response. This paper presents a framework for processing acceleration simulations that is based on seismological approaches for processing recorded data, but establishes the corner frequency of the high-pass filter by minimizing the effect of processing on the response of the structural system, for the response evaluation of which the ground motions were generated. The proposed two-step criterion selects the filter corner frequency by considering both the dynamic and the pseudo-static response of the systems. First, it ensures that the linear/nonlinear dynamic structural response induced by the processed simulations captures the characteristics of the system's dynamic response caused by the unprocessed simulations, the frequency content of which is fully compatible with the target response spectrum. Second, it examines the adequacy of the selected estimate for the filter corner frequency by evaluating the pseudo-static response of the system subjected to spatially variable excitations. It is noted that the first step of this two-fold criterion suffices for the establishment of the corner frequency for the processing of acceleration time series generated at a single ground-surface location to be used in the seismic response evaluation of, e.g. a building structure. Furthermore, the concept also applies for the processing of acceleration time series generated by means of any approach that does not provide physical considerations for the selection of the corner frequency of the high-pass filter.

Propagation of non-uniformly modulated evolutionary random waves in a stratified viscoelastic solid

  • Gao, Q.;Howson, W.P.;Watson, A.;Lin, J.H.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.213-225
    • /
    • 2006
  • The propagation of non-uniformly modulated, evolutionary random waves in viscoelastic, transversely isotropic, stratified materials is investigated. The theory is developed in the context of a multi-layered soil medium overlying bedrock, where the material properties of the bedrock are considered to be much stiffer than those of the soil and the power spectral density of the random excitation is assumed to be known at the bedrock. The governing differential equations are first derived in the frequency/wave-number domain so that the displacement response of the ground may be computed. The eigen-solution expansion method is then used to solve for the responses of the layers. This utilizes the precise integration method, in combination with the extended Wittrick-Williams algorithm, to obtain all the eigen-solutions of the ordinary differential equation. The recently developed pseudo-excitation method for structural random vibration is then used to determine the solution of the layered soil responses.

Damage Count Method Using Acceleration Response for Vibration Test Over Multi-spectral Loading Pattern (복합 스펙트럼 패턴의 진동 시험을 위한 가속도 응답 데이터 기반의 피로 손상도 계산 방법)

  • Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.739-746
    • /
    • 2015
  • Several damage counting methods can be applied for the fatigue issues of a ground vehicle system using strain data and acceleration data is partially used for a high cyclic loading case. For a vibration test, acceleration data is, however, more useful than strain one owing to the good nature of signal-to-random ratio at acceleration response. The test severity can be judged by the fatigue damage and the pseudo-damage from the acceleration response stated in ISO-16750-3 is one of sound solutions for the vibration test. The comparison of fatigue damages, derived from both acceleration and strain, are analyzed in this study to determine the best choice of fatigue damage over multi-spectral input pattern. Uniaxial excitation test was conducted for a notched simple specimen and response data, both acceleration and strain, are used for the comparison of fatigue damages.

Random vibration analysis of train-slab track-bridge coupling system under earthquakes

  • Zeng, Zhi-Ping;He, Xian-Feng;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Ling-Kun;Xu, Wen-Tao;Lou, Ping
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.1017-1044
    • /
    • 2015
  • This study aimed to investigate the random vibration characteristic of train-slab track-bridge interaction system subjected to both track irregularities and earthquakes by use of pseudo-excitation method (PEM). Each vehicle subsystem was modeled by multibody dynamics. A three-dimensional rail-slab- girder-pier finite element model was created to simulate slab track and bridge subsystem. The equations of motion for the entire system were established based on the constraint condition of no jump between wheel and rail. The random load vectors of equations of motion were formulated by transforming track irregularities and seismic accelerations into a series of deterministic pseudo-excitations according to their respective power spectral density (PSD) functions by means of PEM. The time-dependent PSDs of random vibration responses of the system were obtained by step-by-step integration method, and the corresponding extreme values were estimated based on the first-passage failure criterion. As a case study, an ICE3 high-speed train passing a fifteen-span simply supported girder bridge simultaneously excited by track irregularities and earthquakes is presented. The evaluated extreme values and the PSD characteristic of the random vibration responses of bridge and train are analyzed, and the influences of train speed and track irregularities (without earthquakes) on the random vibration characteristic of bridge and train are discussed.