• Title/Summary/Keyword: Protocol-Based Approach

Search Result 440, Processing Time 0.026 seconds

Effects of Manual Therapy on Obstructive Sleep Apnea: Study Protocol for a Systematic Review (폐쇄성 수면무호흡증에 대한 수기요법의 효과: 체계적 문헌고찰을 위한 프로토콜)

  • Jiwon Park;Kwan-Il Kim
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.34 no.3
    • /
    • pp.65-74
    • /
    • 2024
  • Objectives This study aims to establish a protocol for a systematic review to evaluate the effectiveness and safety of manual therapy (MT) for obstructive sleep apnea (OSA). Methods We will conduct a search for relevant randomized controlled trials using seven databases, including MEDLINE/PubMed, Embase, and the Cochrane Central Register of Controlled Trials. The study includes patients with OSA treated with MT. Comparators include all other treatments excluding MT. The primary outcome is the apnea-hypopnea index; secondary outcomes include mean peripheral oxygen saturation, snoring index, quality of sleep, quality of life, peak nasal inspiratory flow, and adverse events. Results Two independent researchers will select studies based on inclusion criteria and extract necessary data. Risk of bias (RoB) will be assessed using the Cochrane RoB 2.0 tool. Meta-analysis will be conducted if there are two or more studies with the same outcome measure; otherwise, a qualitative analysis will be performed. Subgroup analysis will be conducted based on the type of MT, and evidence certainty will be evaluated using the Grading of Recommendations Assessment, Development, and Evaluation approach. Conclusions This study will evaluate the effect of MT on OSA. By systematically reviewing various MTs, it aims to refine application methods in clinical practice and provide a foundation for future research.

A Property-Based Data Sealing using the Weakest Precondition Concept (최소 전제조건 개념을 이용한 성질 기반 데이터 실링)

  • Park, Tae-Jin;Park, Jun-Cheol
    • Journal of Internet Computing and Services
    • /
    • v.9 no.6
    • /
    • pp.1-13
    • /
    • 2008
  • Trusted Computing is a hardware-based technology that aims to guarantee security for machines beyond their users' control by providing security on computing hardware and software. TPM(Trusted Platform Module), the trusted platform specified by the Trusted Computing Group, acts as the roots for the trusted data storage and the trusted reporting of platform configuration. Data sealing encrypts secret data with a key and the platform's configuration at the time of encryption. In contrast to the traditional data sealing based on binary hash values of the platform configuration, a new approach called property-based data sealing was recently suggested. In this paper, we propose and analyze a new property-based data sealing protocol using the weakest precondition concept by Dijkstra. The proposed protocol resolves the problem of system updates by allowing sealed data to be unsealed at any configuration providing the required property. It assumes practically implementable trusted third parties only and protects platform's privacy when communicating. We demonstrate the proposed protocol's operability with any TPM chip by implementing and running the protocol on a software TPM emulator by Strasser. The proposed scheme can be deployed in PDAs and smart phones over wireless mobile networks as well as desktop PCs.

  • PDF

Performance Evaluation of Traffic Adaptive Sleep based MAC in Clustered Wireless Sensor Networks (클러스터 기반 무선 센서 망에서 트래픽 적응적 수면시간 기반 MAC 프로토콜 성능 분석)

  • Xiong, Hongyu;So, Won-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.107-116
    • /
    • 2011
  • In this paper, a traffic adaptive sleep based medium access control (TAS-MAC) protocol for wireless sensor networks (WSNs) is proposed. The protocol aims for WSNs which consist of clustered sensor nodes and is based on TDMA-like schema. It is a typical schedule based mechanism which is adopted in previous protocols such as LEACH and Bit-Map Assisted MAC. The proposed MAC, however, considers unexpected long silent period in which sensor nodes have no data input and events do not happen in monitoring environment. With the simple traffic measurement, the TAS-MAC eliminates scheduling phases consuming energy in previous centralized approaches. A frame structure of the protocol includes three periods, investigation (I), transmission (T), and sleep-period (S). Through the I-period, TAS-MAC aggregates current traffic information from each end node and dynamically decide the length of sleep period to avoid energy waste in long silent period. In spite of the energy efficiency of this approach, the delay of data might increase. Thus, we propose an advanced version of TAS-MAC as well, each node in cluster sends one or more data packets to cluster head during the T-period of a frame. Through simulation, the performance in terms of energy consumption and transmission delay is evaluated. By comparing to BMA-MAC, the results indicate the proposed protocol is more energy efficient with tolerable expense in latency, especially in variable traffic situation.

Distributed Restoration System based on Multi-Agent for Improving Restoration in Distribution Automation System (배전자동화 시스템의 복구기능 향상을 위한 Multi-Agent 기반의 분산형 정전복구 시스템)

  • Lim, Seong-Il;Lim, Il-Hyung;Lee, Seung-Jae;Kwon, Sung-Chul;Ha, Bok-Nam;Choi, Myeon-Song
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.660-668
    • /
    • 2007
  • In order to improve the efficiency of service restoration function in the current Distribution Automation System (DAS), in this paper it is proposed a more advanced and efficient service restoration approach using Multi-Agent technique based on distributed networks. In the current DAS, communication networks or protocol structures are centralized with communications between the central station and FRTU through 1:1 connection. In order to maintain the current systems and enhance the proposed Multi-Agent based service restoration scheme, a device of communication and intelligence, named MASX, is newly developed to make a FRTU as an agent to cooperate each others. the proposed system applied in a demo system for an distribution automation system and shows 8 times reduction of restoration time in restoration of blackouts.

Bioinformatic Suggestions on MiSeq-Based Microbial Community Analysis

  • Unno, Tatsuya
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.765-770
    • /
    • 2015
  • Recent sequencing technology development has revolutionized fields of microbial ecology. MiSeq-based microbial community analysis allows us to sequence more than a few hundred samples at a time, which is far more cost-effective than pyrosequencing. The approach, however, has not been preferably used owing to computational difficulties of processing huge amounts of data as well as known Illumina-derived artefact problems with amplicon sequencing. The choice of assembly software to take advantage of paired-end sequencing and methods to remove Illumina artefacts sequences are discussed. The protocol we suggest not only removed erroneous reads, but also dramatically reduced computational workload, which allows even a typical desktop computer to process a huge amount of sequence data generated with Illumina sequencers. We also developed a Web interface (http://biotech.jejunu.ac.kr/ ~abl/16s/) that allows users to conduct fastq-merging and mothur batch creation. The study presented here should provide technical advantages and supports in applying MiSeq-based microbial community analysis.

Queue Management-Based Duty Cycle Control in Wireless Sensor Networks (무선 센서 네트워크에서 큐 관리 기반의 듀티 사이클 제어)

  • Byun, Hee-Jung;Shon, Su-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1273-1277
    • /
    • 2011
  • This paper proposes a control-based approach for duty cycle adaptation in wireless sensor networks. The proposed method, QCon, controls duty cycle through queue management in order to achieve high performance under variable traffic rates. To minimize energy consumption while meeting delay requirement, we design a feedback controller, which adapts the sleeping time according to dynamically changing traffic by constraining the queue length at a predetermined value. Based on control theory, we analyze the adaptive behavior of QCon and derive conditions for system stability. Results from asymptotic analysis and simulations indicate that QCon outperforms existing scheduling protocol by achieving more energy savings while satisfying delay requirement.

Clinical Preventive Dental and Dental Hygiene Practice by Caries Management by Risk Assessment (CAMBRA) (Caries Management by Risk Assessment (CAMBRA) 모형에 따른 임상 예방치과 및 치위생 진료)

  • Cho, Young-Sik
    • Journal of dental hygiene science
    • /
    • v.12 no.6
    • /
    • pp.545-557
    • /
    • 2012
  • Dental caries is biofilm induced disease throughout life and is recognized significant oral health problem. This article reviewed new trends in dental caries management by risk assessment, including history, protocol/guideline, and collaborated model. Dental caries prevention and treatment according to caries management by risk assessment (CAMBRA) model is patient-centered, risk-based, evidence-based practice. Team approach is necessary and clinician need to integrate science, practice and product. Dental hygienist take a important role in implementing CAMBRA. CAMBRA model could be incorporated into clinical dental hygiene education based on dental hygiene process of care as standard of dental hygiene practice and education. Dentist and dental hygienist able to provide scientific and ethical care managing dental caries by risk assessment.

A Priority-based MAC Protocol to Support QoS in Ad-hoc Networks (애드 혹 네트워크 QoS 지원을 위한 우선순위 기반 MAC 프로토콜)

  • Wang, Weidong;Seo, Chang-Keun;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.80-89
    • /
    • 2005
  • In IEEE 802.11 and 802.11e for ad hoc networks, DCF and EDCA use a contention-based protocol called CSMA/CA, which is simple to implement efficient when the system is light loaded. But the performance of CSMA/CA decreases dramatically when the system load is heavy because of increasing collisions. In PCF and HCF modes, stations are controlled by a base station by polling, no collision ever occurs. However, when the system load is light, the performance is poor because few stations have data to transfer. More important, PCF and HCF can not be used in the ad hoc networks. In this paper, we address a priority-based distributed polling mechanism (PDPM) that implements polling scheme into DCF or EDCA modes for ad hoc networks by adding a polling approach before every contention-based procedure. PDPM takes the advantages of polling mechanism that avoids most of collisions in a high load condition. At the same time, it also keeps the contention-based mechanism for a light loaded condition. PDPM provides quality of service (QoS) with fewer collisions and higher throughput compared with IEEE 802.11e.

A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT

  • Tandon, Aditya;Kumar, Pramod;Rishiwal, Vinay;Yadav, Mano;Yadav, Preeti
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1317-1341
    • /
    • 2021
  • Nowadays, the Internet of Things (IoT) is adopted to enable effective and smooth communication among different networks. In some specific application, the Wireless Sensor Networks (WSN) are used in IoT to gather peculiar data without the interaction of human. The WSNs are self-organizing in nature, so it mostly prefer multi-hop data forwarding. Thus to achieve better communication, a cross-layer routing strategy is preferred. In the cross-layer routing strategy, the routing processed through three layers such as transport, data link, and physical layer. Even though effective communication achieved via a cross-layer routing strategy, energy is another constraint in WSN assisted IoT. Cluster-based communication is one of the most used strategies for effectively preserving energy in WSN routing. This paper proposes a Bio-inspired cross-layer routing (BiHCLR) protocol to achieve effective and energy preserving routing in WSN assisted IoT. Initially, the deployed sensor nodes are arranged in the form of a grid as per the grid-based routing strategy. Then to enable energy preservation in BiHCLR, the fuzzy logic approach is executed to select the Cluster Head (CH) for every cell of the grid. Then a hybrid bio-inspired algorithm is used to select the routing path. The hybrid algorithm combines moth search and Salp Swarm optimization techniques. The performance of the proposed BiHCLR is evaluated based on the Quality of Service (QoS) analysis in terms of Packet loss, error bit rate, transmission delay, lifetime of network, buffer occupancy and throughput. Then these performances are validated based on comparison with conventional routing strategies like Fuzzy-rule-based Energy Efficient Clustering and Immune-Inspired Routing (FEEC-IIR), Neuro-Fuzzy- Emperor Penguin Optimization (NF-EPO), Fuzzy Reinforcement Learning-based Data Gathering (FRLDG) and Hierarchical Energy Efficient Data gathering (HEED). Ultimately the performance of the proposed BiHCLR outperforms all other conventional techniques.

Management of complex surgical wounds of the back: identifying an evidence-based approach

  • Zolper, Elizabeth G.;Saleem, Meher A.;Kim, Kevin G.;Mishu, Mark D.;Sher, Sarah R.;Attinger, Christopher E.;Fan, Kenneth L.;Evans, Karen K.
    • Archives of Plastic Surgery
    • /
    • v.48 no.6
    • /
    • pp.599-606
    • /
    • 2021
  • Background Postoperative dehiscence and surgical site infection after spinal surgery can carry serious morbidity. Multidisciplinary involvement of plastic surgery is essential to minimizing morbidity and achieving definitive closure. However, a standardized approach is lacking. The aim of this study was to identify effective reconstructive interventions for the basis of an evidence-based management protocol. Methods A retrospective review was performed at a single tertiary institution for 45 patients who required 53 reconstruction procedures with plastic surgery for wounds secondary to spinal surgery from 2010 to 2019. Statistical analysis was performed for demographics, comorbidities, and treatment methods. Primary outcomes were postoperative complications, including dehiscence, seroma, and infection. The secondary outcome was time to healing. Results The overall complication rate was 32%, with dehiscence occurring in 17%, seroma in 15% and infection in 11% of cases. Median follow-up was 10 months (interquartile range, 4-23). Use of antibiotic beads did not affect rate of infection occurrence after wound closure (P=0.146). Use of incisional negative pressure wound therapy (iNPWT) was significant for reduced time to healing (P=0.001). Patients treated without iNPWT healed at median of 67.5 days while the patients who received iNPWT healed in 33 days. Demographics and comorbidities between these two groups were similar. Conclusions This data provides groundwork for an evidence-based approach to soft tissue reconstruction and management of dehiscence after spinal surgery. Timely involvement of plastic surgery in high-risk patients and utilization of evidence-based interventions such as iNPWT are essential for improving outcomes in this population.