• Title/Summary/Keyword: Product Functions

Search Result 1,076, Processing Time 0.027 seconds

SOME FRACTIONAL INTEGRAL FORMULAS INVOLVING THE PRODUCT OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Kim, Yongsup
    • Honam Mathematical Journal
    • /
    • v.39 no.3
    • /
    • pp.443-451
    • /
    • 2017
  • Very recently, Agarwal gave remakably a scads of fractional integral formulas involving various special functions. Using the same technique, we obtain certain(presumably) new fractional integral formulas involving the product of confluent hypergeometric functions. Some interesting special cases of our two main results are considered.

DOUBLE INTEGRALS INVOLVING PRODUCT OF TWO GENERALIZED HYPERGEOMETRIC FUNCTIONS

  • Kim, Joohyung;Kim, Insuk
    • Honam Mathematical Journal
    • /
    • v.43 no.1
    • /
    • pp.26-34
    • /
    • 2021
  • In this paper two interesting double integrals involving product of two generalized hypergeometric functions have been evaluated in terms of gamma function. The results are derived with the help of known integrals involving hypergeometric functions recorded in the paper of Rathie et al. [6]. We also give several very interesting special cases.

On Approximation of Functions Belonging to Lip(α, r) Class and to Weighted W(Lr,ξ(t)) Class by Product Mean

  • Nigam, Hare Krishna;Sharm, Ajay
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.4
    • /
    • pp.545-556
    • /
    • 2010
  • A good amount of work has been done on degree of approximation of functions belonging to Lip${\alpha}$, Lip($\xi$(t),r) and W($L_r,\xi(t)$) and classes using Ces$\`{a}$ro, N$\"{o}$rlund and generalised N$\"{o}$rlund single summability methods by a number of researchers ([1], [10], [8], [6], [7], [2], [3], [4], [9]). But till now, nothing seems to have been done so far to obtain the degree of approximation of functions using (N,$p_n$)(C, 1) product summability method. Therefore the purpose of present paper is to establish two quite new theorems on degree of approximation of function $f\;\in\;Lip({\alpha},r)$ class and $f\;\in\;W(L_r,\;\xi(t))$ class by (N, $p_n$)(C, 1) product summability means of its Fourier series.

THE EXISTENCE OF WARPING FUNCTIONS ON RIEMANNIAN WARPED PRODUCT MANIFOLDS

  • Jung, Yoon-Tae;Kim, Seul-Ki;Lee, Ga-Young;Lee, Soo-Young;Choi, Eun-Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.525-532
    • /
    • 2013
  • In this paper, when N is a compact Riemannian manifold of class (A), we consider the existence of some warping functions on Riemannian warped product manifolds $M=[a,{\infty}){\times}_fN$ with prescribed scalar curvatures.

A Constructing Theory of Multiple-Valued Logic Functions based on the Exclusive-OR Minimization Technique and Its Implementation (Exclusive-OR 최소화 기법에 의한 다치논리 함수의 구성 및 실현)

  • 박동영;김흥수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.56-64
    • /
    • 1992
  • The sum-of-product type MVL (Multiple-valued logic) functions can be directly transformed into the exclusive-sum-of-literal-product(ESOLP) type MVL functions with a substitution of the OR operator with the exclusive-OR(XOR) operator. This paper presents an algorithm that can reduce the number of minterms for the purpose of minimizing the hardware size and the complexity of the circuit in the realization of ESOLP-type MVL functions. In Boolean algebra, the joinable true minterms can form the cube, and if some cubes form a cube-chain with adjacent cubes by the insertion of false cubes(or, false minterms), then the created cube-chain can become a large cube which includes previous cubes. As a result of the cube grouping, the number of minterms can be reduced artificially. Since ESOLP-type MVL functions take the MIN/XOR structure, a XOR circuit and a four-valued MIN/XOR dynamic-CMOS PLA circuit is designed for the realization of the minimized functions, and PSPICE simulation results have been also presented for the validation of the proposed algorithm.

  • PDF

PRODUCT AND CONVOLUTION OF CERTAIN UNIVALENT FUNCTIONS

  • Jain, Naveen Kumar;Ravichandran, V.
    • Honam Mathematical Journal
    • /
    • v.38 no.4
    • /
    • pp.701-724
    • /
    • 2016
  • For $f_i$ belonging to various subclasses of univalent functions, we investigate the product given by $h(z)=z{\prod_{i=1}^{n}}(f_i(z)/z)^{{\gamma}_i}$.The largest radius ${\rho}$ is determined such that $h({\rho}z)/{\rho}$ is starlike of order ${\beta}$, $0{\leq}{\beta}$ < 1 or to belong to other subclasses of univalent functions. We also determine the sharp radius of starlikeness of order ${\beta}$and other radius for the convolution f*g of two starlike functions f, g.

FRACTIONAL CALCULUS OPERATORS AND THEIR IMAGE FORMULAS

  • Agarwal, Praveen;Choi, Junesang
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1183-1210
    • /
    • 2016
  • During the past four decades or so, due mainly to a wide range of applications from natural sciences to social sciences, the so-called fractional calculus has attracted an enormous attention of a large number of researchers. Many fractional calculus operators, especially, involving various special functions, have been extensively investigated and widely applied. Here, in this paper, in a systematic manner, we aim to establish certain image formulas of various fractional integral operators involving diverse types of generalized hypergeometric functions, which are mainly expressed in terms of Hadamard product. Some interesting special cases of our main results are also considered and relevant connections of some results presented here with those earlier ones are also pointed out.