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Abstract. A good amount of work has been done on degree of approximation of functions

belonging to Lipα, Lip (α, r) , Lip (ξ (t) , r) and W (Lr, ξ (t)) classes using Cesàro, Nörlund

and generalised Nörlund single summability methods by a number of researchers ([1], [10],

[8], [6], [7], [2], [3], [4], [9]). But till now, nothing seems to have been done so far to obtain

the degree of approximation of functions using (N, pn)(C, 1) product summability method.

Therefore the purpose of present paper is to establish two quite new theorems on degree of

approximation of function f ∈ Lip (α, r) class and f ∈ W (Lr, ξ (t)) class by (N, pn)(C, 1)

product summability means of its Fourier series.

1. Introduction

Let f be 2π-periodic function and Lebesgue integrable. The Fourier series asso-
ciated with f at a point x is defined by

(1.1) f (x) ∼ 1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx)

with nth partial sum sn(f ;x).
Lr− norm is defined by

(1.2) ∥f∥r =

 2π∫
0

|f (x)|rdx


1
r

, r ≥ 1

L∞− norm of a function f : R → R is defined by

(1.3) ∥f∥∞ = sup { |f (x) | : x ∈ R}
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The degree of approximation of a function f : R → R by a trigonometric
polynomial tn of order n under sup norm ∥∥∞ is defined by

∥tn − f∥∞ = sup { |tn − f (x)| : x ∈ R} (Zygmund[12])

and En (f) of a function f ∈ Lr is given by

(1.4) En (f) = min
tn

∥tn − f∥r

This method of approximation is called trigonometric Fourier approximation
(TFA).

A function f ∈ Lipα if

(1.5) |f (x+ t)− f (x)| = O ( | t |α) for 0 < α < 1

f (x) ∈ Lip (α, r) for 0 ≤ x ≤ 2π, if

(1.6)

 2π∫
0

|f (x+ t)− f (x)|rdx


1
r

= O| t |α, 0 < α ≤ 1, r ≥ 1

(definition 5.38 of Mc Fadden[5]).
Given a positive increasing function ξ (t) and an integer r ≥ 1, f ∈ Lip (ξ (t) , r),

if

(1.7)

 2π∫
0

|f (x+ t)− f (x)|rdx


1
r

= O (ξ (t))

and that f ∈ W (Lr, ξ (t)) if

(1.8)

 2π∫
0

∣∣{f (x+ t)− f (x)} sinβx
∣∣rdx


1
r

= O (ξ (t)) , β ≥ 0.

In case β = 0, we find that W (Lr, ξ (t)) class reduces to the Lip (ξ (t) , r) class
and if ξ (t) = tα then Lip (ξ (t) , r) class reduces to the Lip (α, r) class and if r → ∞
then Lip (α, r) class reduces to the Lipα class.

We observe that

Lipα ⊆ Lip (α, r) ⊆ Lip (ξ (t) , r) ⊆ W (Lr, ξ (t)) for 0 < α ≤ 1, r ≥ 1.

Let
∞∑

n=0
un be a given infinite series with the sequence of its nth partial sums

{sn}.
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The (C,1) transform is defined as the nth partial sum of (C,1) summability and
is given by

tn =
s0 + s1 + s2 + ...+ sn

n+ 1

(1.9) =
1

n+ 1

n∑
k=0

sk → s as n → ∞,

then the infinite series
∞∑

n=0
un is summable to the definite number s by (C,1) method.

Let {pn} be a non-negative, non increasing sequence such that

Pn = p0 + p1 + ...+ pn → ∞ as n → ∞, P−1 = p−1 = 0.

The product of (N, pn) summability and (C,1) summability defines (N, pn)(C, 1)
summability and we denote it by Np

nC
1
n.

Thus if

(1.10) Np
nC

1
n =

1

Pn

n∑
k=0

pkC
1
k → s as n → ∞,

where Np
n denotes the (N, pn) transform of sn and C1

n denotes the (C,1) transform

of sn, then the series
∞∑

n=0
un is said to be summable by (N, pn)(C, 1) means or

summable (N, pn)(C, 1) to a definite number s.

The (N, pn) is a regular method of summability.

sn → s ⇒ C1
n (sn) = tn =

1

n+ 1

n∑
k=0

sk → s, as n → ∞ C1
n method is regular

⇒ Np
n

(
C1

n (sn)
)
= Np

nC
1
n → s, as n → ∞ Np

n method is regular

⇒ Np
nC

1
n method is regular.

We use the following notations:

ϕ (t) = f (x+ t) + f (x− t)− 2f (x)

Mn (t) =
1

2πPn

n∑
k=0

{
pk

(
1

1 + k

) k∑
ν=0

sin
(
ν + 1

2

)
t

sin t
2

}
.
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2. Main Theorems

We prove the following theorems.

Theorem 2.1. Let (N, pn) be a regular Nörlund method defined by a positive,
monotonic, non-increasing sequence {pn}. Let f be a 2π-periodic function, Lebesgue
integrable on [0, 2π] and is belonging to Lip (α, r) class, r ≥ 1, then the degree of
approximation of f by Np

nC
1
n means of its Fourier series (1.1) is given by

∥∥Np
nC

1
n − f

∥∥
r
= O

[
1

(n+ 1)
α− 1

r

]
for 0 < α ≤ 1,

where Np
nC

1
n is the (N, pn)(C, 1) means of series (1.1), 1

r +
1
s = 1 such that 1 ≤ r ≤

∞.

Theorem 2.2. Let (N, pn) be a regular Nörlund method defined by a positive,
monotonic, non-increasing sequence{pn}. Let f be a 2π-periodic function, Lebesgue
integrable on [0, 2π] and is belonging to W (Lr, ξ (t)) class, r ≥ 1, then the degree of
approximation of f by Np

nC
1
n means of its Fourier series (1.1) is given by

(2.1)
∥∥Np

nC
1
n − f

∥∥
r
= O

[
(n+ 1)

β+ 1
r ξ

(
1

n+ 1

)]
provided ξ (t) satisfies the following conditions:

(2.2)

{
ξ (t)

t

}
be a decreasing sequence,

(2.3)


1

n+1∫
0

(
t |ϕ (t)|
ξ (t)

)r

sinβ rt dt


1
r

= O

{
1

(n+ 1)

}

and

(2.4)


π∫

1
n+1

(
t−δ |ϕ (t)|

ξ (t)

)r

dt


1
r

= O
{
(n+ 1)

δ
}
,

where δ is an arbitrary number such that s (1− δ)− 1 > 0, 1
r +

1
s = 1, 1 ≤ r ≤ ∞,

conditions (2.3) and (2.4)hold uniformly in x.
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3. Lemmas

For the proof of our theorem, we require following lemmas.

Lemma 3.1. |Mn (t)| = O (n+ 1) for 0 ≤ t ≤ 1
n+1 .

Proof. For 0 ≤ t ≤ 1
n+1 , sinnt ≤ n sin t

|Mn (t)| =
1

2π Pn

∣∣∣∣∣
n∑

k=0

[
pk

(
1

1 + k

) k∑
ν=0

sin (ν + 1) t

sin t
2

]∣∣∣∣∣
≤ 1

2π Pn

∣∣∣∣∣
n∑

k=0

[
pk

(
1

1 + k

) k∑
ν=0

(2ν + 1) sin t
2

sin t
2

]∣∣∣∣∣
≤ 1

2π Pn

∣∣∣∣∣
n∑

k=0

[pk (k + 1)]

∣∣∣∣∣
= O

[
(n+ 1)

Pn

n∑
k=0

pk

]

= O (n+ 1) . 2

Lemma 3.2. |Mn (t)| = O
(
1
t

)
for 1

n+1 ≤ t ≤ π.

Proof. For 1
n+1 ≤ t ≤ π, by applying Jordan’s lemma sin t

2 ≥ t
π and sinnt ≤ 1

|Mn (t)| =
1

2π Pn

∣∣∣∣∣
n∑

k=0

[
pk

(
1

1 + k

) k∑
ν=0

sin
(
ν + 1

2

)
t

sin t
2

]∣∣∣∣∣
≤ 1

2π Pn

∣∣∣∣∣
n∑

k=0

[
pk

(
1

1 + k

) k∑
ν=0

(
1

t/π

)]∣∣∣∣∣
=

1

2t Pn

∣∣∣∣∣
n∑

k=0

[
pk

(
1

1 + k

) k∑
ν=0

(1)

]∣∣∣∣∣
=

1

2t Pn

∣∣∣∣∣
n∑

k=0

pk

∣∣∣∣∣
= O

(
1

t

)
. 2

Lemma 3.3. (Mc Fadden[5], Lemma 5.40). If f(x) belongs to Lip (α, q) on [0, π]
then ϕ (t) belongs to Lip (α, q) on [0, π].

Lemma 3.4. If f(x) belongs to Lip (α, r) on [0, π] then ϕ (t) belongs to Lip (α, r)
on [0, π].
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Proof. Replacing q by r in above Lemma 3.3, we get Lemma 3.4. 2

4. Proof of Theorem 2.1

Following Titchmarsh[11] and using Riemann-Lebesgue theorem, sn (f ;x) of the
series (1.1) is given by

sn (f ;x)− f (x) =
1

2π

π∫
0

ϕ (t)
sin
(
n+ 1

2

)
t

sin t
2

dt.

Using (1.9), the (C,1) transform C1
n of sn (f ;x) is given by

C1
n − f (x) =

1

2π (n+ 1)

π∫
0

ϕ (t)

n∑
k=0

sin
(
k + 1

2

)
t

sin t
2

dt.

Now denoting (N, pn)(C, 1) transform of sn (f ;x) by Np
nC

1
n, we write

Np
nC

1
n − f (x) =

1

2π Pn

n∑
k=0

pk ( 1

k + 1

) π∫
0

ϕ (t)

sin t
2

{
k∑

ν=0

sin

(
ν +

1

2

)
t

}
dt


=

π∫
0

ϕ (t) Mn (t) dt

=


1

n+1∫
0

+

π∫
1

n+1

 ϕ (t) Mn (t) dt

= I1.1 + I1.2(say).(4.1)

We consider,

I1.1 =

1
n+1∫
0

|ϕ (t)| |Mn (t)| dt.

Using Hölder’s inequality and Lemma 3.4,

|I1.1| ≤


1

n+1∫
0

{
t |ϕ (t)|

tα

}r

dt


1
r


1
n+1∫
0

{
|Mn (t)|
t1−α

}s

dt


1
s

≤
(

1

n+ 1

)
1

n+1∫
0

{
Mn (t)

t1−α

}s

dt


1
s
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= O

(
1

n+ 1

)
1

n+1∫
0

{
(n+ 1)

t1−α

}s

dt


1
s

by Lemma 3.1

= O


1

n+1∫
0

tα s−s dt


1
s

= O

[(
1

n+ 1

)α s−s+1
s

]

= O

[(
1

n+ 1

)α−1+ 1
s

]

= O

[(
1

n+ 1

)α−(1− 1
s )
]

I1.1 = O

[(
1

n

)α− 1
r

]
since

1

r
+

1

s
= 1.(4.2)

Similarly, as above, we have

I1.2 ≤

 π∫
1

n+1

{
t−δ |ϕ (t)|

tα

}r

dt


1
r
 π∫

1
n+1

{
|Mn (t)|
t−δ−α

}s

dt


1
s

= O

 π∫
1

n+1

{
t−δtα−

1
r

tα

}r

dt


1
r
 π∫

1
n+1

{
|Mn(t)|
t−δ−α

}s

dt


1
s

= O

 π∫
1

n+1

{
t−δtα−

1
r

tα

}r

dt


1
r
 π∫

1
n+1

{
1

t1−δ−α

}s

dt


1
s

by Lemma 3.2

= O

 π∫
1

n+1

{
t−

1
r −δ

}r

dt


1
r
 π∫

1
n+1

tsα+sδ−s dt


1
s

= O

 π∫
1

n+1

t− 1−δ r dt


1
r
 π∫

1
n+1

tsα+sδ−s dt


1
s
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= O

[
(n+ 1)

δ
{
(n+ 1)

−sα−sδ+s−1
} 1

s

]
= O

[
(n+ 1)

δ
(n+ 1)

−α−δ+1− 1
s

]
= O

[
(n+ 1)

−α+(1− 1
s )
]

I1.2 = O

[
1

(n+ 1)
α− 1

r

]
.(4.3)

This completes the proof of Theorem 2.1.

5. Proof of Theorem 2.2

Following the proof of theorem 2.1,

Np
nC

1
n − f (x) =


1

n+1∫
0

+

π∫
1

n+1

 ϕ (t) Mn (t) dt

(5.1) Np
nC

1
n − f (x) = I2.1 + I2.2 (say).

We have

|ϕ (x+ t)− ϕ (x)| ≤ |f (u+ x+ t)− f (u+ x)|+ |f(u− x− t)− f(u− x)| .

Hence, by Minkowiski’s inequality,

 2π∫
0

∣∣{ϕ (x+ t)− ϕ (x)} sinβx
∣∣rdx


1
r

≤

 2π∫
0

∣∣{f (u+ x+ t)− f (u+ x)} sinβx
∣∣rdx


1
r

+

 2π∫
0

∣∣{f (u− x− t)− f (u− x)} sinβx
∣∣rdx


1
r

= O {ξ (t)} .

Then f ∈ W (Lr, ξ (t)) ⇒ ϕ ∈ W (Lr, ξ (t)) .

We consider

|I2.1| ≤

1
n+1∫
0

|ϕ (t)| |Mn (t)| dt
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Using Hölder’s inequality and the fact that ϕ (t) ∈ W (Lr, ξ (t)),

|I2.1| ≤


1

n+1∫
0

{
t |ϕ (t)| sinβt

ξ (t)

}r

dt


1
r


1
n+1∫
0

{
ξ (t) |Mn (t)|

t sinβt

}s

dt


1
s

= O

(
1

n+ 1

)
1

n+1∫
0

{
ξ (t) |Mn (t) |

t sinβt

}s

dt


1
s

by (2.3).

Since sin t ≥ (2t/π) and using Lemma 3.1,

I2.1 = O

(
1

n+ 1

)
1

n+1∫
0

{
(n+ 1) ξ (t)

t1+β

}s

dt


1
s

.

Since ξ (t) is a positive increasing function, and using second mean value theorem
for integrals,

I2.1 = O

{
ξ

(
1

n+ 1

)}
1

n+1∫
∈

dt

t(1+β)s


1
s

for some 0 <∈< 1

n+ 1

= O

{
ξ

(
1

n+ 1

)}[{
t−(1+β)s+1

− (1 + β) s+ 1

} 1
n+1

∈

] 1
s

= O

{
ξ

(
1

n+ 1

)}[
{n+ 1}1+β− 1

s

]
I2.1 = O

[
{n+ 1}β+

1
r ξ

(
1

n+ 1

)]
since

1

r
+

1

s
= 1.(5.2)

Using Hölder’s inequality |sin t| ≤ 1, sin t ≥ (2t/π), conditions (2.2), (2.4),
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Lemma 3.2 and second mean value theorem for integrals,

|I2.2| ≤

 π∫
1

n+1

{
t−δ |ϕ (t)| sinβt

ξ (t)

}r

dt


1
r
 π∫

1
n+1

{
ξ (t) |Mn (t)|
t−δsinβt

}s

dt


1
s

≤

 π∫
1

n+1

{
t−δ |ϕ (t)|

ξ (t)

}r

dt


1
r
 π∫

1
n+1

{
ξ (t) |Mn (t)|
t−δsinβt

}s

dt


1
s

= O
{
(n+ 1)

δ
}  π∫

1
n+1

{
ξ (t) |Mn (t)|

t−δsinβt

}s

dt


1
s

I2.2 = O
{
(n+ 1)

δ
} π∫

1
n+1

{
ξ (t)

tβ+1−δ

}s

dt


1
s

.

Putting t = 1
y

I2.2 = O
{
(n+ 1)

δ
} n+1∫

1
π

 ξ
(

1
y

)
yδ−β−1


s

dy

y2


1
s

= O

{
(n+ 1)

δ
ξ

(
1

n+ 1

)} n+1∫
η

1

ys(δ−1−β)+2
dy


1
s

for some
1

π
≤ η ≤ (n+ 1)

= O

{
(n+ 1)

δ
ξ

(
1

n+ 1

)} n+1∫
1

1

ys(δ−1−β)+2
dy


1
s

for some
1

π
≤ 1 ≤ (n+ 1)

= O

{
(n+ 1)

δ
ξ

(
1

n+ 1

)}[
(n+ 1)

(β+1−δ)− 1
s

]
= O

{
(n+ 1)

β+1− 1
s ξ

(
1

n+ 1

)}

(5.3) I2.2 = O

{
(n+ 1)

β+ 1
r ξ

(
1

n+ 1

)}
since

1

r
+

1

s
= 1.

Now combining (5.1), (5.2) and (5.3), we get∣∣Np
nC

1
n − f (x)

∣∣ = O

{
(n+ 1)

β+ 1
r ξ

(
1

n+ 1

)}
.
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Now using Lr- norm, we get

∥∥Np
nC

1
n − f

∥∥
r
=


2π∫
0

∣∣Np
nC

1
n − f (x)

∣∣rdx


1
r

=


2π∫
0

{
(n+ 1)

β+ 1
r ξ

(
1

n+ 1

)}r

dx


1
r

= O

{
(n+ 1)

β+ 1
r ξ

(
1

n+ 1

)}
2π∫
0

dx


1
r

= O

{
(n+ 1)

β+ 1
r ξ

(
1

n+ 1

)}
.

This completes the proof of the Theorem 2.

6. Corollary

Following corollary can be derived from our main theorem.

Corollary 6.1. If ξ (t) = tα, 0 < α ≤ 1, then the weighted W (Lr, ξ (t)) class, r ≥
1, reduces to the class Lip(α, r) and the degree of approximation of a 2π - periodic
function f ∈ Lip(α, r), 1

r < α ≤ 1, is given by

∣∣Np
nC

1
n − f

∣∣ = O

(
1

(n+ 1)
α− 1

r

)
.

Proof: The result follows by setting β = 0 in (2.1). 2
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