On Approximation of Functions Belonging to $Lip(\alpha, r)$ Class and to Weighted $W(L_r, \xi(t))$ Class by Product Means

HARE KRISHNA NIGAM* AND AJAY SHARMA

Department of Mathematics, Faculty of Engineering and Technology, Mody Institute of Technology and Science (Deemed University), Laxmangarh-332311, Sikar (Rajasthan), India

 $e ext{-}mail: ext{harekrishnanQyahoo.com} \ and \ ext{ajaymathematicsanandQgmail.com}$

ABSTRACT. A good amount of work has been done on degree of approximation of functions belonging to $Lip\alpha$, $Lip(\alpha,r)$, $Lip(\xi(t),r)$ and $W(L_r,\xi(t))$ classes using Cesàro, Nörlund and generalised Nörlund single summability methods by a number of researchers ([1], [10], [8], [6], [7], [2], [3], [4], [9]). But till now, nothing seems to have been done so far to obtain the degree of approximation of functions using $(N, p_n)(C, 1)$ product summability method. Therefore the purpose of present paper is to establish two quite new theorems on degree of approximation of function $f \in Lip(\alpha, r)$ class and $f \in W(L_r, \xi(t))$ class by $(N, p_n)(C, 1)$ product summability means of its Fourier series.

1. Introduction

Let f be 2π -periodic function and Lebesgue integrable. The Fourier series associated with f at a point x is defined by

(1.1)
$$f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

with n^{th} partial sum $s_n(f;x)$.

 L_r – norm is defined by

(1.2)
$$||f||_{r} = \left(\int_{0}^{2\pi} |f(x)|^{r} dx \right)^{\frac{1}{r}}, \ r \ge 1$$

 L_{∞} – norm of a function $f: R \to R$ is defined by

(1.3)
$$||f||_{\infty} = \sup \{ |f(x)| : x \in R \}$$

Received January 21, 2010; revised September 3,2010; accepted October 28, 2010. 2000 Mathematics Subject Classification: 42B05, 42B08.

Key words and phrases: Degree of approximation, $Lip(\alpha, r)$ class, $W(L_r, \xi(t))$ class of functions, (N, p_n) mean, (C,1) mean, $(N, p_n)(C,1)$ product means, Fourier series, Lebesgue integral.

^{*} Corresponding Author.

The degree of approximation of a function $f: R \to R$ by a trigonometric polynomial t_n of order n under sup norm $\|\cdot\|_{\infty}$ is defined by

$$||t_n - f||_{\infty} = \sup \{ |t_n - f(x)| : x \in \mathbb{R} \}$$
(Zygmund[12])

and $E_n(f)$ of a function $f \in L_r$ is given by

$$(1.4) E_n(f) = \min_{t_n} ||t_n - f||_r$$

This method of approximation is called trigonometric Fourier approximation (TFA).

A function $f \in Lip\alpha$ if

$$|f(x+t) - f(x)| = O(|t|^{\alpha}) \ for \ 0 < \alpha < 1$$

$$f(x) \in Lip(\alpha, r)$$
 for $0 \le x \le 2\pi$, if

(1.6)
$$\left(\int_{0}^{2\pi} |f(x+t) - f(x)|^{r} dx\right)^{\frac{1}{r}} = O|t|^{\alpha}, \ 0 < \alpha \le 1, \ r \ge 1$$

(definition 5.38 of Mc Fadden[5]).

Given a positive increasing function $\xi\left(t\right)$ and an integer $r\geq1,\ f\in Lip\left(\xi\left(t\right),r\right),$ if

(1.7)
$$\left(\int_{0}^{2\pi} |f(x+t) - f(x)|^{r} dx\right)^{\frac{1}{r}} = O(\xi(t))$$

and that $f \in W(L_r, \xi(t))$ if

(1.8)
$$\left(\int_{0}^{2\pi} \left|\left\{f\left(x+t\right)-f\left(x\right)\right\}\sin^{\beta}x\right|^{r}dx\right)^{\frac{1}{r}} = O\left(\xi\left(t\right)\right), \ \beta \geq 0.$$

In case $\beta = 0$, we find that $W(L_r, \xi(t))$ class reduces to the $Lip(\xi(t), r)$ class and if $\xi(t) = t^{\alpha}$ then $Lip(\xi(t), r)$ class reduces to the $Lip(\alpha, r)$ class and if $r \to \infty$ then $Lip(\alpha, r)$ class reduces to the $Lip\alpha$ class.

We observe that

$$Lip\alpha \subseteq Lip(\alpha, r) \subseteq Lip(\xi(t), r) \subseteq W(L_r, \xi(t)) for 0 < \alpha \le 1, r \ge 1.$$

Let $\sum_{n=0}^{\infty} u_n$ be a given infinite series with the sequence of its n^{th} partial sums $\{s_n\}$.

The (C,1) transform is defined as the n^{th} partial sum of (C,1) summability and is given by

$$t_n = \frac{s_0 + s_1 + s_2 + \dots + s_n}{n+1}$$

$$= \frac{1}{n+1} \sum_{k=0}^{n} s_k \to s \text{ as } n \to \infty,$$

then the infinite series $\sum_{n=0}^{\infty} u_n$ is summable to the definite number s by (C,1) method.

Let $\{p_n\}$ be a non-negative, non increasing sequence such that

$$P_n = p_0 + p_1 + \dots + p_n \to \infty$$
 as $n \to \infty$, $P_{-1} = p_{-1} = 0$.

The product of (N, p_n) summability and (C,1) summability defines $(N, p_n)(C,1)$ summability and we denote it by $N_n^p C_n^1$.

Thus if

(1.10)
$$N_n^p C_n^1 = \frac{1}{P_n} \sum_{k=0}^n p_k C_k^1 \to s \quad as \quad n \to \infty,$$

where N_n^p denotes the (N, p_n) transform of s_n and C_n^1 denotes the (C,1) transform of s_n , then the series $\sum_{n=0}^{\infty} u_n$ is said to be summable by $(N, p_n)(C, 1)$ means or summable $(N, p_n)(C, 1)$ to a definite number s.

The (N, p_n) is a regular method of summability.

$$s_n \to s \Rightarrow C_n^1(s_n) = t_n = \frac{1}{n+1} \sum_{k=0}^n s_k \to s, \ as \ n \to \infty \quad C_n^1 \text{ method is regular}$$

$$\Rightarrow N_n^p\left(C_n^1(s_n)\right) = N_n^p C_n^1 \to s, \ as \ n \to \infty \quad N_n^p \text{ method is regular}$$

$$\Rightarrow N_n^p C_n^1 \text{ method is regular}.$$

We use the following notations:

$$\phi(t) = f(x+t) + f(x-t) - 2f(x)$$

$$M_n(t) = \frac{1}{2\pi P_n} \sum_{k=0}^n \left\{ p_k \left(\frac{1}{1+k} \right) \sum_{\nu=0}^k \frac{\sin(\nu + \frac{1}{2}) t}{\sin \frac{t}{2}} \right\}.$$

2. Main Theorems

We prove the following theorems.

Theorem 2.1. Let (N, p_n) be a regular Nörlund method defined by a positive, monotonic, non-increasing sequence $\{p_n\}$. Let f be a 2π -periodic function, Lebesgue integrable on $[0, 2\pi]$ and is belonging to $Lip(\alpha, r)$ class, $r \geq 1$, then the degree of approximation of f by $N_n^p C_n^1$ means of its Fourier series (1.1) is given by

$$\left\|N_n^pC_n^1-f\right\|_r=O\left[\frac{1}{\left(n+1\right)^{\alpha-\frac{1}{r}}}\right]for\,0<\alpha\leq 1,$$

where $N_n^p C_n^1$ is the $(N, p_n)(C, 1)$ means of series (1.1), $\frac{1}{r} + \frac{1}{s} = 1$ such that $1 \le r \le \infty$.

Theorem 2.2. Let (N, p_n) be a regular Nörlund method defined by a positive, monotonic, non-increasing sequence $\{p_n\}$. Let f be a 2π -periodic function, Lebesgue integrable on $[0, 2\pi]$ and is belonging to $W(L_r, \xi(t))$ class, $r \geq 1$, then the degree of approximation of f by $N_n^p C_n^1$ means of its Fourier series (1.1) is given by

(2.1)
$$\|N_n^p C_n^1 - f\|_r = O\left[(n+1)^{\beta + \frac{1}{r}} \xi\left(\frac{1}{n+1}\right) \right]$$

provided $\xi(t)$ satisfies the following conditions:

(2.2)
$$\left\{\frac{\xi\left(t\right)}{t}\right\} be \ a \ decreasing \ sequence,$$

$$\left\{ \int_{0}^{\frac{1}{n+1}} \left(\frac{t \left| \phi \left(t \right) \right|}{\xi \left(t \right)} \right)^{r} \sin^{\beta r} t \, dt \right\}^{\frac{1}{r}} = O\left\{ \frac{1}{(n+1)} \right\}$$

and

(2.4)
$$\left\{ \int_{\frac{1}{n+1}}^{\pi} \left(\frac{t^{-\delta} \left| \phi\left(t\right) \right|}{\xi\left(t\right)} \right)^{r} dt \right\}^{\frac{1}{r}} = O\left\{ \left(n+1\right)^{\delta} \right\},$$

where δ is an arbitrary number such that $s(1-\delta)-1>0$, $\frac{1}{r}+\frac{1}{s}=1$, $1\leq r\leq \infty$, conditions (2.3) and (2.4) hold uniformly in x.

3. Lemmas

For the proof of our theorem, we require following lemmas.

Lemma 3.1. $|M_n(t)| = O(n+1)$ for $0 \le t \le \frac{1}{n+1}$.

Proof. For $0 \le t \le \frac{1}{n+1}$, $\sin nt \le n \sin t$

$$|M_n(t)| = \frac{1}{2\pi P_n} \left| \sum_{k=0}^n \left[p_k \left(\frac{1}{1+k} \right) \sum_{\nu=0}^k \frac{\sin(\nu+1) t}{\sin \frac{t}{2}} \right] \right|$$

$$\leq \frac{1}{2\pi P_n} \left| \sum_{k=0}^n \left[p_k \left(\frac{1}{1+k} \right) \sum_{\nu=0}^k \frac{(2\nu+1) \sin \frac{t}{2}}{\sin \frac{t}{2}} \right] \right|$$

$$\leq \frac{1}{2\pi P_n} \left| \sum_{k=0}^n \left[p_k (k+1) \right] \right|$$

$$= O\left[\frac{(n+1)}{P_n} \sum_{k=0}^n p_k \right]$$

$$= O(n+1).$$

Lemma 3.2. $|M_n(t)| = O\left(\frac{1}{t}\right) for \frac{1}{n+1} \le t \le \pi$.

Proof. For $\frac{1}{n+1} \le t \le \pi$, by applying Jordan's lemma $\sin \frac{t}{2} \ge \frac{t}{\pi}$ and $\sin nt \le 1$

$$|M_n(t)| = \frac{1}{2\pi P_n} \left| \sum_{k=0}^n \left[p_k \left(\frac{1}{1+k} \right) \sum_{\nu=0}^k \frac{\sin\left(\nu + \frac{1}{2}\right) t}{\sin\frac{t}{2}} \right] \right|$$

$$\leq \frac{1}{2\pi P_n} \left| \sum_{k=0}^n \left[p_k \left(\frac{1}{1+k} \right) \sum_{\nu=0}^k \left(\frac{1}{t/\pi} \right) \right] \right|$$

$$= \frac{1}{2t P_n} \left| \sum_{k=0}^n \left[p_k \left(\frac{1}{1+k} \right) \sum_{\nu=0}^k (1) \right] \right|$$

$$= \frac{1}{2t P_n} \left| \sum_{k=0}^n p_k \right|$$

$$= O\left(\frac{1}{t}\right).$$

Lemma 3.3. (Mc Fadden[5], Lemma 5.40). If f(x) belongs to $Lip(\alpha, q)$ on $[0, \pi]$ then $\phi(t)$ belongs to $Lip(\alpha, q)$ on $[0, \pi]$.

Lemma 3.4. If f(x) belongs to $Lip(\alpha, r)$ on $[0, \pi]$ then $\phi(t)$ belongs to $Lip(\alpha, r)$ on $[0, \pi]$.

Proof. Replacing q by r in above Lemma 3.3, we get Lemma 3.4.

4. Proof of Theorem 2.1

Following Titchmarsh[11] and using Riemann-Lebesgue theorem, $s_n(f;x)$ of the series (1.1) is given by

$$s_n(f;x) - f(x) = \frac{1}{2\pi} \int_0^{\pi} \phi(t) \frac{\sin\left(n + \frac{1}{2}\right) t}{\sin\frac{t}{2}} dt.$$

Using (1.9), the (C,1) transform C_n^1 of $s_n(f;x)$ is given by

$$C_{n}^{1} - f(x) = \frac{1}{2\pi (n+1)} \int_{0}^{\pi} \phi(t) \sum_{k=0}^{n} \frac{\sin(k + \frac{1}{2}) t}{\sin \frac{t}{2}} dt.$$

Now denoting $(N, p_n)(C, 1)$ transform of $s_n(f; x)$ by $N_n^p C_n^1$, we write

$$N_{n}^{p}C_{n}^{1} - f(x) = \frac{1}{2\pi P_{n}} \sum_{k=0}^{n} \left[p_{k} \left(\frac{1}{k+1} \right) \int_{0}^{\pi} \frac{\phi(t)}{\sin \frac{t}{2}} \left\{ \sum_{\nu=0}^{k} \sin \left(\nu + \frac{1}{2} \right) t \right\} dt \right]$$

$$= \int_{0}^{\pi} \phi(t) M_{n}(t) dt$$

$$= \left[\int_{0}^{\frac{1}{n+1}} + \int_{\frac{1}{n+1}}^{\pi} dt dt \right] \phi(t) M_{n}(t) dt$$

$$= I_{1.1} + I_{1.2}(say).$$

$$(4.1)$$

We consider,

$$I_{1.1} = \int_{0}^{\frac{1}{n+1}} |\phi(t)| |M_n(t)| dt.$$

Using Hölder's inequality and Lemma 3.4

$$|I_{1.1}| \leq \left[\int_{0}^{\frac{1}{n+1}} \left\{ \frac{t |\phi(t)|}{t^{\alpha}} \right\}^{r} dt \right]^{\frac{1}{r}} \left[\int_{0}^{\frac{1}{n+1}} \left\{ \frac{|M_n(t)|}{t^{1-\alpha}} \right\}^{s} dt \right]^{\frac{1}{s}}$$

$$\leq \left(\frac{1}{n+1}\right) \left[\int_{0}^{\frac{1}{n+1}} \left\{ \frac{M_n(t)}{t^{1-\alpha}} \right\}^{s} dt \right]^{\frac{1}{s}}$$

$$= O\left(\frac{1}{n+1}\right) \left[\int_{0}^{\frac{1}{n+1}} \left\{\frac{(n+1)}{t^{1-\alpha}}\right\}^{s} dt\right]^{\frac{1}{s}}$$
 by Lemma 3.1
$$= O\left[\int_{0}^{\frac{1}{n+1}} t^{\alpha s-s} dt\right]^{\frac{1}{s}}$$

$$= O\left[\left(\frac{1}{n+1}\right)^{\frac{\alpha s-s+1}{s}}\right]$$

$$= O\left[\left(\frac{1}{n+1}\right)^{\alpha-1+\frac{1}{s}}\right]$$

$$= O\left[\left(\frac{1}{n+1}\right)^{\alpha-(1-\frac{1}{s})}\right]$$

$$= O\left[\left(\frac{1}{n+1}\right)^{\alpha-\frac{1}{r}}\right]$$
 since $\frac{1}{r} + \frac{1}{s} = 1$.

Similarly, as above, we have

$$I_{1.2} \leq \left[\int_{\frac{1}{n+1}}^{\pi} \left\{ \frac{t^{-\delta} |\phi(t)|}{t^{\alpha}} \right\}^{r} dt \right]^{\frac{1}{r}} \left[\int_{\frac{1}{n+1}}^{\pi} \left\{ \frac{|M_{n}(t)|}{t^{-\delta-\alpha}} \right\}^{s} dt \right]^{\frac{1}{s}}$$

$$= O \left[\int_{\frac{1}{n+1}}^{\pi} \left\{ \frac{t^{-\delta} t^{\alpha - \frac{1}{r}}}{t^{\alpha}} \right\}^{r} dt \right]^{\frac{1}{r}} \left[\int_{\frac{1}{n+1}}^{\pi} \left\{ \frac{|M_{n}(t)|}{t^{-\delta-\alpha}} \right\}^{s} dt \right]^{\frac{1}{s}}$$

$$= O \left[\int_{\frac{1}{n+1}}^{\pi} \left\{ \frac{t^{-\delta} t^{\alpha - \frac{1}{r}}}{t^{\alpha}} \right\}^{r} dt \right]^{\frac{1}{r}} \left[\int_{\frac{1}{n+1}}^{\pi} \left\{ \frac{1}{t^{1-\delta-\alpha}} \right\}^{s} dt \right]^{\frac{1}{s}}$$
 by Lemma 3.2
$$= O \left[\int_{\frac{1}{n+1}}^{\pi} \left\{ t^{-\frac{1}{r}-\delta} \right\}^{r} dt \right]^{\frac{1}{r}} \left[\int_{\frac{1}{n+1}}^{\pi} t^{s\alpha+s\delta-s} dt \right]^{\frac{1}{s}}$$

$$= O \left[\int_{\frac{1}{n+1}}^{\pi} t^{-1-\delta r} dt \right]^{\frac{1}{r}} \left[\int_{\frac{1}{n+1}}^{\pi} t^{s\alpha+s\delta-s} dt \right]^{\frac{1}{s}}$$

$$= O\left[(n+1)^{\delta} \left\{ (n+1)^{-s\alpha - s\delta + s - 1} \right\}^{\frac{1}{s}} \right]$$

$$= O\left[(n+1)^{\delta} (n+1)^{-\alpha - \delta + 1 - \frac{1}{s}} \right]$$

$$= O\left[(n+1)^{-\alpha + \left(1 - \frac{1}{s}\right)} \right]$$

$$(4.3) \quad I_{1,2} = O\left[\frac{1}{(n+1)^{\alpha - \frac{1}{r}}} \right].$$

This completes the proof of Theorem 2.1.

5. Proof of Theorem 2.2

Following the proof of theorem 2.1,

$$N_{n}^{p}C_{n}^{1} - f(x) = \begin{bmatrix} \int_{0}^{\frac{1}{n+1}} \int_{\frac{1}{n+1}}^{\pi} \\ \int_{0}^{\frac{1}{n+1}} \int_{\frac{1}{n+1}}^{\pi} \end{bmatrix} \phi(t) M_{n}(t) dt$$

(5.1)
$$N_n^p C_n^1 - f(x) = I_{2.1} + I_{2.2} \quad \text{(say)}.$$

We have

$$|\phi(x+t) - \phi(x)| \le |f(u+x+t) - f(u+x)| + |f(u-x-t) - f(u-x)|$$

Hence, by Minkowiski's inequality,

$$\left[\int_{0}^{2\pi} \left| \{ \phi(x+t) - \phi(x) \} \sin^{\beta} x \right|^{r} dx \right]^{\frac{1}{r}} \leq \left[\int_{0}^{2\pi} \left| \{ f(u+x+t) - f(u+x) \} \sin^{\beta} x \right|^{r} dx \right]^{\frac{1}{r}}$$

$$+ \left[\int_{0}^{2\pi} \left| \{ f(u-x-t) - f(u-x) \} \sin^{\beta} x \right|^{r} dx \right]^{\frac{1}{r}} = O\{ \xi(t) \}.$$

Then $f \in W(L_r, \xi(t)) \Rightarrow \phi \in W(L_r, \xi(t))$.

We consider

$$|I_{2.1}| \le \int_{0}^{\frac{1}{n+1}} |\phi(t)| |M_n(t)| dt$$

Using Hölder's inequality and the fact that $\phi(t) \in W(L_r, \xi(t))$,

$$|I_{2.1}| \leq \left[\int_{0}^{\frac{1}{n+1}} \left\{ \frac{t |\phi(t)| \sin^{\beta} t}{\xi(t)} \right\}^{r} dt \right]^{\frac{1}{r}} \left[\int_{0}^{\frac{1}{n+1}} \left\{ \frac{\xi(t) |M_{n}(t)|}{t \sin^{\beta} t} \right\}^{s} dt \right]^{\frac{1}{s}}$$

$$= O\left(\frac{1}{n+1} \right) \left[\int_{0}^{\frac{1}{n+1}} \left\{ \frac{\xi(t) |M_{n}(t)|}{t \sin^{\beta} t} \right\}^{s} dt \right]^{\frac{1}{s}} by (2.3).$$

Since $\sin t \ge (2t/\pi)$ and using Lemma 3.1,

$$I_{2.1} = O\left(\frac{1}{n+1}\right) \left[\int_{0}^{\frac{1}{n+1}} \left\{ \frac{(n+1)\,\xi\,(t)}{t^{1+\beta}} \right\}^{s} dt \right]^{\frac{1}{s}}.$$

Since ξ (t) is a positive increasing function, and using second mean value theorem for integrals,

$$I_{2.1} = O\left\{\xi\left(\frac{1}{n+1}\right)\right\} \left[\int_{\xi}^{\frac{1}{n+1}} \frac{dt}{t^{(1+\beta)s}}\right]^{\frac{1}{s}} \text{ for some } 0 < \xi < \frac{1}{n+1}$$

$$= O\left\{\xi\left(\frac{1}{n+1}\right)\right\} \left[\left\{\frac{t^{-(1+\beta)s+1}}{-(1+\beta)s+1}\right\}_{\xi}^{\frac{1}{n+1}}\right]^{\frac{1}{s}}$$

$$= O\left\{\xi\left(\frac{1}{n+1}\right)\right\} \left[\left\{n+1\right\}^{1+\beta-\frac{1}{s}}\right]$$

$$(5.2) \qquad I_{2.1} = O\left[\left\{n+1\right\}^{\beta+\frac{1}{r}}\xi\left(\frac{1}{n+1}\right)\right] \text{ since } \frac{1}{r} + \frac{1}{s} = 1.$$

Using Hölder's inequality $|\sin t| \le 1$, $\sin t \ge (2t/\pi)$, conditions (2.2), (2.4),

Lemma 3.2 and second mean value theorem for integrals,

$$|I_{2.2}| \leq \left[\int_{\frac{1}{n+1}}^{\pi} \left\{ \frac{t^{-\delta} |\phi(t)| \sin^{\beta} t}{\xi(t)} \right\}^{r} dt \right]^{\frac{1}{r}} \left[\int_{\frac{1}{n+1}}^{\pi} \left\{ \frac{\xi(t) |M_{n}(t)|}{t^{-\delta} \sin^{\beta} t} \right\}^{s} dt \right]^{\frac{1}{s}}$$

$$\leq \left[\int_{\frac{1}{n+1}}^{\pi} \left\{ \frac{t^{-\delta} |\phi(t)|}{\xi(t)} \right\}^{r} dt \right]^{\frac{1}{r}} \left[\int_{\frac{1}{n+1}}^{\pi} \left\{ \frac{\xi(t) |M_{n}(t)|}{t^{-\delta} \sin^{\beta} t} \right\}^{s} dt \right]^{\frac{1}{s}}$$

$$= O\left\{ (n+1)^{\delta} \right\} \left[\int_{\frac{1}{n+1}}^{\pi} \left\{ \frac{\xi(t) |M_{n}(t)|}{t^{-\delta} \sin^{\beta} t} \right\}^{s} dt \right]^{\frac{1}{s}}$$

$$I_{2.2} = O\left\{ (n+1)^{\delta} \right\} \left[\int_{\frac{1}{n+1}}^{\pi} \left\{ \frac{\xi(t)}{t^{\beta+1-\delta}} \right\}^{s} dt \right]^{\frac{1}{s}}.$$

Putting $t = \frac{1}{y}$

$$I_{2.2} = O\left\{ (n+1)^{\delta} \right\} \left[\int_{\frac{1}{\pi}}^{n+1} \left\{ \frac{\xi\left(\frac{1}{y}\right)}{y^{\delta-\beta-1}} \right\}^{s} \frac{dy}{y^{2}} \right]^{\frac{1}{s}}$$

$$= O\left\{ (n+1)^{\delta} \xi\left(\frac{1}{n+1}\right) \right\} \left[\int_{\eta}^{n+1} \frac{1}{y^{s(\delta-1-\beta)+2}} dy \right]^{\frac{1}{s}} \text{ for some } \frac{1}{\pi} \le \eta \le (n+1)$$

$$= O\left\{ (n+1)^{\delta} \xi\left(\frac{1}{n+1}\right) \right\} \left[\int_{1}^{n+1} \frac{1}{y^{s(\delta-1-\beta)+2}} dy \right]^{\frac{1}{s}} \text{ for some } \frac{1}{\pi} \le 1 \le (n+1)$$

$$= O\left\{ (n+1)^{\delta} \xi\left(\frac{1}{n+1}\right) \right\} \left[(n+1)^{(\beta+1-\delta)-\frac{1}{s}} \right]$$

$$= O\left\{ (n+1)^{\beta+1-\frac{1}{s}} \xi\left(\frac{1}{n+1}\right) \right\}$$

(5.3)
$$I_{2.2} = O\left\{ (n+1)^{\beta + \frac{1}{r}} \xi\left(\frac{1}{n+1}\right) \right\} \quad \text{since } \frac{1}{r} + \frac{1}{s} = 1.$$

Now combining (5.1), (5.2) and (5.3), we get

$$\left|N_n^p C_n^1 - f\left(x\right)\right| = O\left\{\left(n+1\right)^{\beta + \frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\}.$$

Now using L_r - norm, we get

$$||N_n^p C_n^1 - f||_r = \left\{ \int_0^{2\pi} |N_n^p C_n^1 - f(x)|^r dx \right\}^{\frac{1}{r}}$$

$$= \left\{ \int_0^{2\pi} \left\{ (n+1)^{\beta + \frac{1}{r}} \xi\left(\frac{1}{n+1}\right) \right\}^r dx \right\}^{\frac{1}{r}}$$

$$= O\left\{ (n+1)^{\beta + \frac{1}{r}} \xi\left(\frac{1}{n+1}\right) \right\} \left\{ \int_0^{2\pi} dx \right\}^{\frac{1}{r}}$$

$$= O\left\{ (n+1)^{\beta + \frac{1}{r}} \xi\left(\frac{1}{n+1}\right) \right\}.$$

This completes the proof of the Theorem 2.

6. Corollary

Following corollary can be derived from our main theorem.

Corollary 6.1. If $\xi(t) = t^{\alpha}, 0 < \alpha \le 1$, then the weighted $W(L_r, \xi(t))$ class, $r \ge 1$, reduces to the class $Lip(\alpha, r)$ and the degree of approximation of a 2π - periodic function $f \in Lip(\alpha, r), \frac{1}{r} < \alpha \le 1$, is given by

$$|N_n^p C_n^1 - f| = O\left(\frac{1}{(n+1)^{\alpha - \frac{1}{r}}}\right).$$

Proof: The result follows by setting $\beta = 0$ in (2.1).

References

- [1] G. Alexits, Convergence problems of orthogonal series, Translated from German by I Földer. International series of Monograms in Pure and Applied Mathematics, 20 Pergamon Press, New York-Oxford-Paris, 1961.
- [2] Prem Chandra, Trigonometric approximation of functions in L^p norm, J. Math. Anal. Appl., $\bf 275(1)(2002)$, 13-26.
- [3] H. H. Khan, On degree of approximation of functions belonging to the class Lip (α, p), Indian J. Pure Appl. Math., 5(2)(1974), 132-136.
- [4] Lászaló Leindler, Trigonometric approximation in L^p norm, J. Math. Anal. Appl., ${\bf 302}(2005)$.

- [5] Leonard McFadden, Absolute Nörlund summability, Duke Math. J., 9(1942), 168-207.
- [6] K. Qureshi, On the degree of approximation of a periodic function f by almost Nörlund means, Tamkang J. Math., 12(1)(1981), 35-38.
- [7] K. Qureshi, On the degree of approximation of a function belonging to the class Lipα, Indian J. pure Appl. Math., 13(8)(1982), 898-903.
- [8] K. Qureshi; and H. K. Neha, A class of functions and their degree of approximation, Ganita, 41(1)(1990), 37-42.
- [9] B. E. Rhaodes, On degree of approximation of functions belonging to lipschitz class by Hausdorff means of its Fourier series, Tamkang Journal of Mathematics, **34**(3)(2003), 245-247.
- [10] B. N. Sahney; and D. S. Goel, On the degree of continuous functions, Ranchi University Math. Jour., 4(1973), 50-53.
- [11] E. C. Titchmarsh, The Theory of functions, Oxford Univ. Press,(1939), 402-403.
- [12] A. Zygmund, *Trigonometric series*, 2nd rev. ed., Cambridge Univ. Press, Cambridge, 1(1959).