On Approximation of Functions Belonging to $\operatorname{Lip}(\alpha, r)$ Class and to Weighted $W\left(L_{r}, \xi(t)\right)$ Class by Product Means

Hare Krishna Nigam* and Ajay Sharma
Department of Mathematics, Faculty of Engineering and Technology, Mody Institute of Technology and Science (Deemed University), Laxmangarh-332311, Sikar (Rajasthan), India
e-mail: harekrishnan@yahoo.com and ajaymathematicsanand@gmail.com

Abstract. A good amount of work has been done on degree of approximation of functions belonging to $\operatorname{Lip} \alpha, \operatorname{Lip}(\alpha, r), \operatorname{Lip}(\xi(t), r)$ and $W\left(L_{r}, \xi(t)\right)$ classes using Cesàro, Nörlund and generalised Nörlund single summability methods by a number of researchers ([1], [10], [8], [6], [7], [2], [3], [4], [9]). But till now, nothing seems to have been done so far to obtain the degree of approximation of functions using $\left(N, p_{n}\right)(C, 1)$ product summability method. Therefore the purpose of present paper is to establish two quite new theorems on degree of approximation of function $f \in \operatorname{Lip}(\alpha, r)$ class and $f \in W\left(L_{r}, \xi(t)\right)$ class by $\left(N, p_{n}\right)(C, 1)$ product summability means of its Fourier series.

1. Introduction

Let f be 2π-periodic function and Lebesgue integrable. The Fourier series associated with f at a point x is defined by

$$
\begin{equation*}
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1.1}
\end{equation*}
$$

with $n^{\text {th }}$ partial sum $s_{n}(f ; x)$.
$L_{r}-$ norm is defined by

$$
\begin{equation*}
\|f\|_{r}=\left(\int_{0}^{2 \pi}|f(x)|^{r} d x\right)^{\frac{1}{r}}, r \geq 1 \tag{1.2}
\end{equation*}
$$

$L_{\infty}-$ norm of a function $f: R \rightarrow R$ is defined by

$$
\begin{equation*}
\|f\|_{\infty}=\sup \{|f(x)|: x \in R\} \tag{1.3}
\end{equation*}
$$

[^0]The degree of approximation of a function $f: R \rightarrow R$ by a trigonometric polynomial t_{n} of order n under sup norm $\left\|\|_{\infty}\right.$ is defined by

$$
\left\|t_{n}-f\right\|_{\infty}=\sup \left\{\left|t_{n}-f(x)\right|: x \in R\right\}(\text { Zygmund }[12])
$$

and $E_{n}(f)$ of a function $f \in L_{r}$ is given by

$$
\begin{equation*}
E_{n}(f)=\min _{t_{n}}\left\|t_{n}-f\right\|_{r} \tag{1.4}
\end{equation*}
$$

This method of approximation is called trigonometric Fourier approximation (TFA).

A function $f \in \operatorname{Lip\alpha }$ if

$$
\begin{equation*}
|f(x+t)-f(x)|=O\left(|t|^{\alpha}\right) \text { for } 0<\alpha<1 \tag{1.5}
\end{equation*}
$$

$f(x) \in \operatorname{Lip}(\alpha, r)$ for $0 \leq x \leq 2 \pi$, if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{\frac{1}{r}}=O|t|^{\alpha}, 0<\alpha \leq 1, r \geq 1 \tag{1.6}
\end{equation*}
$$

(definition 5.38 of Mc Fadden[5]).
Given a positive increasing function $\xi(t)$ and an integer $r \geq 1, f \in \operatorname{Lip}(\xi(t), r)$, if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{\frac{1}{r}}=O(\xi(t)) \tag{1.7}
\end{equation*}
$$

and that $f \in W\left(L_{r}, \xi(t)\right)$ if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}\left|\{f(x+t)-f(x)\} \sin ^{\beta} x\right|^{r} d x\right)^{\frac{1}{r}}=O(\xi(t)), \beta \geq 0 . \tag{1.8}
\end{equation*}
$$

In case $\beta=0$, we find that $W\left(L_{r}, \xi(t)\right)$ class reduces to the $\operatorname{Lip}(\xi(t), r)$ class and if $\xi(t)=t^{\alpha}$ then $\operatorname{Lip}(\xi(t), r)$ class reduces to the $\operatorname{Lip}(\alpha, r)$ class and if $r \rightarrow \infty$ then Lip (α, r) class reduces to the Lip α class.

We observe that

$$
\operatorname{Lip} \alpha \subseteq \operatorname{Lip}(\alpha, r) \subseteq \operatorname{Lip}(\xi(t), r) \subseteq W\left(L_{r}, \xi(t)\right) \text { for } 0<\alpha \leq 1, r \geq 1
$$

Let $\sum_{n=0}^{\infty} u_{n}$ be a given infinite series with the sequence of its $n^{t h}$ partial sums $\left\{s_{n}\right\}$.

The $(\mathrm{C}, 1)$ transform is defined as the $n^{\text {th }}$ partial sum of $(\mathrm{C}, 1)$ summability and is given by

$$
\begin{align*}
t_{n} & =\frac{s_{0}+s_{1}+s_{2}+\ldots+s_{n}}{n+1} \\
& =\frac{1}{n+1} \sum_{k=0}^{n} s_{k} \rightarrow \text { s as } n \rightarrow \infty \tag{1.9}
\end{align*}
$$

then the infinite series $\sum_{n=0}^{\infty} u_{n}$ is summable to the definite number s by (C,1) method.
Let $\left\{p_{n}\right\}$ be a non-negative, non increasing sequence such that

$$
P_{n}=p_{0}+p_{1}+\ldots+p_{n} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, P_{-1}=p_{-1}=0
$$

The product of $\left(N, p_{n}\right)$ summability and (C,1) summability defines $\left(N, p_{n}\right)(C, 1)$ summability and we denote it by $N_{n}^{p} C_{n}^{1}$.

Thus if

$$
\begin{equation*}
N_{n}^{p} C_{n}^{1}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} C_{k}^{1} \rightarrow s \quad \text { as } \quad n \rightarrow \infty \tag{1.10}
\end{equation*}
$$

where N_{n}^{p} denotes the $\left(N, p_{n}\right)$ transform of s_{n} and C_{n}^{1} denotes the (C,1) transform of s_{n}, then the series $\sum_{n=0}^{\infty} u_{n}$ is said to be summable by $\left(N, p_{n}\right)(C, 1)$ means or summable $\left(N, p_{n}\right)(C, 1)$ to a definite number s .

The $\left(N, p_{n}\right)$ is a regular method of summability.
$s_{n} \rightarrow s \Rightarrow C_{n}^{1}\left(s_{n}\right)=t_{n}=\frac{1}{n+1} \sum_{k=0}^{n} s_{k} \rightarrow s$, as $n \rightarrow \infty \quad C_{n}^{1}$ method is regular

$$
\Rightarrow N_{n}^{p}\left(C_{n}^{1}\left(s_{n}\right)\right)=N_{n}^{p} C_{n}^{1} \rightarrow s, \text { as } n \rightarrow \infty \quad N_{n}^{p} \text { method is regular }
$$

$$
\Rightarrow N_{n}^{p} C_{n}^{1} \text { method is regular. }
$$

We use the following notations:

$$
\begin{aligned}
\phi(t) & =f(x+t)+f(x-t)-2 f(x) \\
M_{n}(t) & =\frac{1}{2 \pi P_{n}} \sum_{k=0}^{n}\left\{p_{k}\left(\frac{1}{1+k}\right) \sum_{\nu=0}^{k} \frac{\sin \left(\nu+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\} .
\end{aligned}
$$

2. Main Theorems

We prove the following theorems.
Theorem 2.1. Let $\left(N, p_{n}\right)$ be a regular Nörlund method defined by a positive, monotonic, non-increasing sequence $\left\{p_{n}\right\}$. Let f be a 2π-periodic function, Lebesgue integrable on $[0,2 \pi]$ and is belonging to Lip (α, r) class, $r \geq 1$, then the degree of approximation of f by $N_{n}^{p} C_{n}^{1}$ means of its Fourier series (1.1) is given by

$$
\left\|N_{n}^{p} C_{n}^{1}-f\right\|_{r}=O\left[\frac{1}{(n+1)^{\alpha-\frac{1}{r}}}\right] \text { for } 0<\alpha \leq 1
$$

where $N_{n}^{p} C_{n}^{1}$ is the $\left(N, p_{n}\right)(C, 1)$ means of series $(1.1), \frac{1}{r}+\frac{1}{s}=1$ such that $1 \leq r \leq$ ∞.

Theorem 2.2. Let $\left(N, p_{n}\right)$ be a regular Nörlund method defined by a positive, monotonic, non-increasing sequence $\left\{p_{n}\right\}$. Let f be a 2π-periodic function, Lebesgue integrable on $[0,2 \pi]$ and is belonging to $W\left(L_{r}, \xi(t)\right)$ class, $r \geq 1$, then the degree of approximation of f by $N_{n}^{p} C_{n}^{1}$ means of its Fourier series (1.1) is given by

$$
\begin{equation*}
\left\|N_{n}^{p} C_{n}^{1}-f\right\|_{r}=O\left[(n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right] \tag{2.1}
\end{equation*}
$$

provided $\xi(t)$ satisfies the following conditions:

$$
\begin{equation*}
\left\{\int_{0}^{\frac{1}{n+1}}\left(\frac{t|\phi(t)|}{\xi(t)}\right)^{r} \sin ^{\beta r} t d t\right\}^{\frac{1}{r}}=O\left\{\frac{1}{(n+1)}\right\} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\int_{\frac{1}{n+1}}^{\pi}\left(\frac{t^{-\delta}|\phi(t)|}{\xi(t)}\right)^{r} d t\right\}^{\frac{1}{r}}=O\left\{(n+1)^{\delta}\right\} \tag{2.4}
\end{equation*}
$$

where δ is an arbitrary number such that $s(1-\delta)-1>0, \frac{1}{r}+\frac{1}{s}=1, \quad 1 \leq r \leq \infty$, conditions (2.3) and (2.4)hold uniformly in x.

3. Lemmas

For the proof of our theorem, we require following lemmas.
Lemma 3.1. $\left|M_{n}(t)\right|=O(n+1)$ for $0 \leq t \leq \frac{1}{n+1}$.
Proof. For $0 \leq t \leq \frac{1}{n+1}, \sin n t \leq n \sin t$

$$
\begin{aligned}
\left|M_{n}(t)\right| & =\frac{1}{2 \pi P_{n}}\left|\sum_{k=0}^{n}\left[p_{k}\left(\frac{1}{1+k}\right) \sum_{\nu=0}^{k} \frac{\sin (\nu+1) t}{\sin \frac{t}{2}}\right]\right| \\
& \leq \frac{1}{2 \pi P_{n}}\left|\sum_{k=0}^{n}\left[p_{k}\left(\frac{1}{1+k}\right) \sum_{\nu=0}^{k} \frac{(2 \nu+1) \sin \frac{t}{2}}{\sin \frac{t}{2}}\right]\right| \\
& \leq \frac{1}{2 \pi P_{n}}\left|\sum_{k=0}^{n}\left[p_{k}(k+1)\right]\right| \\
& =O\left[\frac{(n+1)}{P_{n}} \sum_{k=0}^{n} p_{k}\right] \\
& =O(n+1) .
\end{aligned}
$$

Lemma 3.2. $\left|M_{n}(t)\right|=O\left(\frac{1}{t}\right)$ for $\frac{1}{n+1} \leq t \leq \pi$.
Proof. For $\frac{1}{n+1} \leq t \leq \pi$, by applying Jordan's lemma $\sin \frac{t}{2} \geq \frac{t}{\pi}$ and $\sin n t \leq 1$

$$
\begin{aligned}
\left|M_{n}(t)\right| & =\frac{1}{2 \pi P_{n}}\left|\sum_{k=0}^{n}\left[p_{k}\left(\frac{1}{1+k}\right) \sum_{\nu=0}^{k} \frac{\sin \left(\nu+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right]\right| \\
& \leq \frac{1}{2 \pi P_{n}}\left|\sum_{k=0}^{n}\left[p_{k}\left(\frac{1}{1+k}\right) \sum_{\nu=0}^{k}\left(\frac{1}{t / \pi}\right)\right]\right| \\
& =\frac{1}{2 t P_{n}}\left|\sum_{k=0}^{n}\left[p_{k}\left(\frac{1}{1+k}\right) \sum_{\nu=0}^{k}(1)\right]\right| \\
& =\frac{1}{2 t P_{n}}\left|\sum_{k=0}^{n} p_{k}\right| \\
& =O\left(\frac{1}{t}\right) .
\end{aligned}
$$

Lemma 3.3. (Mc Fadden[5], Lemma 5.40). If $f(x)$ belongs to $\operatorname{Lip}(\alpha, q)$ on $[0, \pi]$ then $\phi(t)$ belongs to $\operatorname{Lip}(\alpha, q)$ on $[0, \pi]$.

Lemma 3.4. If $f(x)$ belongs to Lip (α, r) on $[0, \pi]$ then $\phi(t)$ belongs to Lip (α, r) on $[0, \pi]$.

Proof. Replacing q by r in above Lemma 3.3, we get Lemma 3.4.

4. Proof of Theorem 2.1

Following Titchmarsh[11] and using Riemann-Lebesgue theorem, $s_{n}(f ; x)$ of the series (1.1) is given by

$$
s_{n}(f ; x)-f(x)=\frac{1}{2 \pi} \int_{0}^{\pi} \phi(t) \frac{\sin \left(n+\frac{1}{2}\right) t}{\sin \frac{t}{2}} d t
$$

Using (1.9), the (C,1) transform C_{n}^{1} of $s_{n}(f ; x)$ is given by

$$
C_{n}^{1}-f(x)=\frac{1}{2 \pi(n+1)} \int_{0}^{\pi} \phi(t) \sum_{k=0}^{n} \frac{\sin \left(k+\frac{1}{2}\right) t}{\sin \frac{t}{2}} d t
$$

Now denoting $\left(N, p_{n}\right)(C, 1)$ transform of $s_{n}(f ; x)$ by $N_{n}^{p} C_{n}^{1}$, we write

$$
\begin{align*}
N_{n}^{p} C_{n}^{1}-f(x) & =\frac{1}{2 \pi P_{n}} \sum_{k=0}^{n}\left[p_{k}\left(\frac{1}{k+1}\right) \int_{0}^{\pi} \frac{\phi(t)}{\sin \frac{t}{2}}\left\{\sum_{\nu=0}^{k} \sin \left(\nu+\frac{1}{2}\right) t\right\} d t\right] \\
& =\int_{0}^{\pi} \phi(t) M_{n}(t) d t \\
& =\left[\int_{0}^{\frac{1}{n+1}}+\int_{\frac{1}{n+1}}^{\pi}\right] \phi(t) M_{n}(t) d t \\
& =I_{1.1}+I_{1.2}(\text { say }) . \tag{4.1}
\end{align*}
$$

$$
I_{1.1}=\int_{0}^{\frac{1}{n+1}}|\phi(t)|\left|M_{n}(t)\right| d t
$$

Using Hölder's inequality and Lemma 3.4,

$$
\begin{aligned}
\left|I_{1.1}\right| & \leq\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{t|\phi(t)|}{t^{\alpha}}\right\}^{r} d t\right]^{\frac{1}{r}}\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{\left|M_{n}(t)\right|}{t^{1-\alpha}}\right\}^{s} d t\right]^{\frac{1}{s}} \\
& \leq\left(\frac{1}{n+1}\right)\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{M_{n}(t)}{t^{1-\alpha}}\right\}^{s} d t\right]^{\frac{1}{s}}
\end{aligned}
$$

$$
\begin{align*}
& =O\left(\frac{1}{n+1}\right)\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{(n+1)}{t^{1-\alpha}}\right\}^{s} d t\right]^{\frac{1}{s}} \text { by Lemma } 3.1 \\
& =O\left[\int_{0}^{\frac{1}{n+1}} t^{\alpha s-s} d t\right]^{\frac{1}{s}} \\
& =O\left[\left(\frac{1}{n+1}\right)^{\frac{\alpha s-s+1}{s}}\right] \\
& =O\left[\left(\frac{1}{n+1}\right)^{\alpha-1+\frac{1}{s}}\right] \\
& =O\left[\left(\frac{1}{n+1}\right)^{\alpha-\left(1-\frac{1}{s}\right)}\right] \\
I_{1.1} & =O\left[\left(\frac{1}{n}\right)^{\alpha-\frac{1}{r}}\right] \operatorname{since} \frac{1}{r}+\frac{1}{s}=1 . \tag{4.2}
\end{align*}
$$

Similarly, as above, we have

$$
\begin{aligned}
I_{1.2} & \leq\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{t^{-\delta}|\phi(t)|}{t^{\alpha}}\right\}^{r} d t\right]^{\frac{1}{r}}\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{\left|M_{n}(t)\right|}{t^{-\delta-\alpha}}\right\}^{s} d t\right]^{\frac{1}{s}} \\
& =O\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{t^{-\delta} t^{\alpha-\frac{1}{r}}}{t^{\alpha}}\right\}^{r} d t\right]^{\frac{1}{r}}\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{\left|M_{n}(t)\right|}{t^{-\delta-\alpha}}\right\}^{s} d t\right]^{\frac{1}{s}} \\
& =O\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{t^{-\delta} t^{\alpha-\frac{1}{r}}}{t^{\alpha}}\right\}^{r} d t\right]^{\frac{1}{r}}\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{1}{t^{1-\delta-\alpha}}\right\}^{s} d t\right]^{\frac{1}{s}} \text { by Lemma } 3.2 \\
& =O\left[\int_{\frac{1}{n+1}}^{\pi}\left\{t^{-\frac{1}{r}-\delta}\right\}^{r} d t\right]^{\frac{1}{r}}\left[\int_{\frac{1}{n+1}}^{\pi} t^{s \alpha+s \delta-s} d t\right]^{\frac{1}{s}} \\
& =O\left[\int_{\frac{1}{n+1}}^{\pi} t^{-1-\delta r} d t\right]^{\frac{1}{r}}\left[\int_{\frac{1}{n+1}}^{\pi} t^{s \alpha+s \delta-s} d t\right]^{\frac{1}{s}}
\end{aligned}
$$

(4.3)

$$
\begin{aligned}
& =O\left[(n+1)^{\delta}\left\{(n+1)^{-s \alpha-s \delta+s-1}\right\}^{\frac{1}{s}}\right] \\
& =O\left[(n+1)^{\delta}(n+1)^{-\alpha-\delta+1-\frac{1}{s}}\right] \\
& =O\left[(n+1)^{-\alpha+\left(1-\frac{1}{s}\right)}\right] \\
I_{1.2} & =O\left[\frac{1}{(n+1)^{\alpha-\frac{1}{r}}}\right]
\end{aligned}
$$

This completes the proof of Theorem 2.1.

5. Proof of Theorem 2.2

Following the proof of theorem 2.1,

$$
N_{n}^{p} C_{n}^{1}-f(x)=\left[\int_{0}^{\frac{1}{n+1}}+\int_{\frac{1}{n+1}}^{\pi}\right] \phi(t) M_{n}(t) d t
$$

$$
\begin{equation*}
N_{n}^{p} C_{n}^{1}-f(x)=I_{2.1}+I_{2.2} \quad(\text { say }) \tag{5.1}
\end{equation*}
$$

We have

$$
|\phi(x+t)-\phi(x)| \leq|f(u+x+t)-f(u+x)|+|f(u-x-t)-f(u-x)| .
$$

Hence, by Minkowiski's inequality,

$$
\begin{aligned}
{\left[\int_{0}^{2 \pi}\left|\{\phi(x+t)-\phi(x)\} \sin ^{\beta} x\right|^{r} d x\right]^{\frac{1}{r}} \leq } & {\left[\int_{0}^{2 \pi}\left|\{f(u+x+t)-f(u+x)\} \sin ^{\beta} x\right|^{r} d x\right]^{\frac{1}{r}} } \\
+ & {\left[\int_{0}^{2 \pi}\left|\{f(u-x-t)-f(u-x)\} \sin ^{\beta} x\right|^{r} d x\right]^{\frac{1}{r}}=O\{\xi(t)\} . }
\end{aligned}
$$

Then $f \in W\left(L_{r}, \xi(t)\right) \Rightarrow \phi \in W\left(L_{r}, \xi(t)\right)$.
We consider

$$
\left|I_{2.1}\right| \leq \int_{0}^{\frac{1}{n+1}}|\phi(t)|\left|M_{n}(t)\right| d t
$$

Using Hölder's inequality and the fact that $\phi(t) \in W\left(L_{r}, \xi(t)\right)$,

$$
\begin{aligned}
\left|I_{2.1}\right| & \leq\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{t|\phi(t)| \sin ^{\beta} t}{\xi(t)}\right\}^{r} d t\right]^{\frac{1}{r}}\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{\xi(t)\left|M_{n}(t)\right|}{t \sin ^{\beta} t}\right\}^{s} d t\right]^{\frac{1}{s}} \\
& =O\left(\frac{1}{n+1}\right)\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{\xi(t)\left|M_{n}(t)\right|}{t \sin ^{\beta} t}\right\}^{s} d t\right]^{\frac{1}{s}} b y(2.3) .
\end{aligned}
$$

Since $\sin t \geq(2 t / \pi)$ and using Lemma 3.1,

$$
I_{2.1}=O\left(\frac{1}{n+1}\right)\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{(n+1) \xi(t)}{t^{1+\beta}}\right\}^{s} d t\right]^{\frac{1}{s}}
$$

Since $\xi(t)$ is a positive increasing function, and using second mean value theorem for integrals,

$$
\begin{align*}
I_{2.1} & =O\left\{\xi\left(\frac{1}{n+1}\right)\right\}\left[\int_{\epsilon}^{\frac{1}{n+1}} \frac{d t}{t^{(1+\beta) s}}\right]^{\frac{1}{s}} \text { for some } 0<\epsilon<\frac{1}{n+1} \\
& =O\left\{\xi\left(\frac{1}{n+1}\right)\right\}\left[\left\{\frac{t^{-(1+\beta) s+1}}{-(1+\beta) s+1}\right\}_{\epsilon}^{\frac{1}{n+1}}\right]^{\frac{1}{s}} \\
& =O\left\{\xi\left(\frac{1}{n+1}\right)\right\}\left[\{n+1\}^{1+\beta-\frac{1}{s}}\right] \\
I_{2.1} & =O\left[\{n+1\}^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right] \text { since } \frac{1}{r}+\frac{1}{s}=1 . \tag{5.2}
\end{align*}
$$

Using Hölder's inequality $|\sin t| \leq 1, \sin t \geq(2 t / \pi)$, conditions (2.2), (2.4),

Lemma 3.2 and second mean value theorem for integrals,

$$
\begin{aligned}
\left|I_{2.2}\right| & \leq\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{t^{-\delta}|\phi(t)| \sin ^{\beta} t}{\xi(t)}\right\}^{r} d t\right]^{\frac{1}{r}}\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{\xi(t)\left|M_{n}(t)\right|}{t^{-\delta} \sin ^{\beta} t}\right\}^{s} d t\right]^{\frac{1}{s}} \\
& \left.\leq\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{t^{-\delta}|\phi(t)|}{\xi(t)}\right\}^{r} d t\right]_{\frac{1}{n+1}}^{\frac{1}{r}}\left[\frac{\xi(t)\left|M_{n}(t)\right|}{t^{-\delta} \sin ^{\beta} t}\right\}^{s} d t\right]^{\frac{1}{s}} \\
& =O\left\{(n+1)^{\delta}\right\}\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{\xi(t)\left|M_{n}(t)\right|}{t^{-\delta} \sin ^{\beta} t}\right\}^{s} d t\right]^{\frac{1}{s}} \\
I_{2.2} & =O\left\{(n+1)^{\delta}\right\}\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{\xi(t)}{t^{\beta+1-\delta}}\right\}^{s} d t\right]^{\frac{1}{s}} .
\end{aligned}
$$

Putting $t=\frac{1}{y}$

$$
\begin{align*}
I_{2.2} & \left.=O\left\{(n+1)^{\delta}\right\}\left[\int_{\frac{1}{\pi}}^{n+1}\left\{\frac{\xi\left(\frac{1}{y}\right)}{y^{\delta-\beta-1}}\right\}\right\}^{s} \frac{d y}{y^{2}}\right]^{\frac{1}{s}} \\
& =O\left\{(n+1)^{\delta} \xi\left(\frac{1}{n+1}\right)\right\}\left[\int_{\eta}^{n+1} \frac{1}{y^{s(\delta-1-\beta)+2}} d y\right]^{\frac{1}{s}} \text { for some } \frac{1}{\pi} \leq \eta \leq(n+1) \\
& =O\left\{(n+1)^{\delta} \xi\left(\frac{1}{n+1}\right)\right\}\left[\int_{1}^{n+1} \frac{1}{y^{s(\delta-1-\beta)+2}} d y\right]^{\frac{1}{s}} \text { for some } \frac{1}{\pi} \leq 1 \leq(n+1) \\
& =O\left\{(n+1)^{\delta} \xi\left(\frac{1}{n+1}\right)\right\}\left[(n+1)^{(\beta+1-\delta)-\frac{1}{s}}\right] \\
& =O\left\{(n+1)^{\beta+1-\frac{1}{s}} \xi\left(\frac{1}{n+1}\right)\right\} \\
\text { (5.3) } & =I I_{2.2}=O\left\{(n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\} \text { since } \frac{1}{r}+\frac{1}{s}=1 . \tag{5.3}
\end{align*}
$$

Now combining (5.1), (5.2) and (5.3), we get

$$
\left|N_{n}^{p} C_{n}^{1}-f(x)\right|=O\left\{(n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\}
$$

Now using $L_{r^{-}}$norm, we get

$$
\begin{aligned}
\left\|N_{n}^{p} C_{n}^{1}-f\right\|_{r} & =\left\{\int_{0}^{2 \pi}\left|N_{n}^{p} C_{n}^{1}-f(x)\right|^{r} d x\right\}^{\frac{1}{r}} \\
& =\left\{\int_{0}^{2 \pi}\left\{(n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\}^{r} d x\right\}^{\frac{1}{r}} \\
& =O\left\{(n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\}\left\{\int_{0}^{2 \pi} d x\right\}^{\frac{1}{r}} \\
& =O\left\{(n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\} .
\end{aligned}
$$

This completes the proof of the Theorem 2.

6. Corollary

Following corollary can be derived from our main theorem.
Corollary 6.1. If $\xi(t)=t^{\alpha}, 0<\alpha \leq 1$, then the weighted $W\left(L_{r}, \xi(t)\right)$ class, $r \geq$ 1 , reduces to the class Lip (α, r) and the degree of approximation of a 2π - periodic function $f \in \operatorname{Lip}(\alpha, r), \frac{1}{r}<\alpha \leq 1$, is given by

$$
\left|N_{n}^{p} C_{n}^{1}-f\right|=O\left(\frac{1}{(n+1)^{\alpha-\frac{1}{r}}}\right)
$$

Proof: The result follows by setting $\beta=0$ in (2.1).

References

[1] G. Alexits, Convergence problems of orthogonal series, Translated from German by I Földer. International series of Monograms in Pure and Applied Mathematics, 20 Pergamon Press, New York-Oxford-Paris, 1961.
[2] Prem Chandra, Trigonometric approximation of functions in L^{p} norm, J. Math. Anal. Appl., 275(1)(2002), 13-26.
[3] H. H. Khan, On degree of approximation of functions belonging to the class Lip (α, p), Indian J. Pure Appl. Math., 5(2)(1974), 132-136.
[4] Lászaló Leindler, Trigonometric approximation in L^{p} norm, J. Math. Anal. Appl., 302(2005).
[5] Leonard McFadden, Absolute Nörlund summability, Duke Math. J., 9(1942), 168-207.
[6] K. Qureshi, On the degree of approximation of a periodic function f by almost Nörlund means, Tamkang J. Math., 12(1)(1981), 35-38.
[7] K. Qureshi, On the degree of approximation of a function belonging to the class Lipa, Indian J. pure Appl. Math., 13(8)(1982), 898-903.
[8] K. Qureshi; and H. K. Neha, A class of functions and their degree of approximation, Ganita, 41(1)(1990), 37-42.
[9] B. E. Rhaodes, On degree of approximation of functions belonging to lipschitz class by Hausdorff means of its Fourier series, Tamkang Journal of Mathematics, 34(3)(2003), 245-247.
[10] B. N. Sahney; and D. S. Goel, On the degree of continuous functions, Ranchi University Math. Jour., 4(1973), 50-53.
[11] E. C. Titchmarsh, The Theory of functions, Oxford Univ. Press,(1939), 402-403.
[12] A. Zygmund, Trigonometric series, 2nd rev. ed., Cambridge Univ. Press, Cambridge, 1(1959).

[^0]: * Corresponding Author. Received January 21, 2010; revised September 3,2010; accepted October 28, 2010. 2000 Mathematics Subject Classification: 42B05, 42B08.
 Key words and phrases: Degree of approximation, $\operatorname{Lip}(\alpha, r)$ class, $W\left(L_{r}, \xi(t)\right)$ class of functions, $\left(N, p_{n}\right)$ mean, (C,1) mean, $\left(N, p_{n}\right)(C, 1)$ product means, Fourier series, Lebesgue integral.

