최근 서비스 로봇에 대한 연구가 여러분야에서 활발해지며, 노인 보조와 같은 실내 서비스를 위한 연구가 많이 이루어지고 있다. 이 때 로봇이 효과적이고 정확한 서비스를 하기 위해서 물체와 상황을 적절하게 인식하는 것은 중요하다. 전통적인 물체 인식 방법은 미리 정의된 기하학적 모델에 기반하였으나 이런 접근 방법은 대상 물체가 다른 물체에 가려져 보이지 않는 상황 둥 불확실성을 포함하는 실내환경에서는 한계가 있다 본 논문에서는 로봇의 효과적인 물체 탐색을 위해 대상이 되는 물체의 존재 가능성을 추론하기 위한 베이지안 네트워크 모델을 제안한다. 이를 위해 활동별로 물체간의 관계를 모델링하여 고정되어 있지 않은 환경에 보다 유연하게 적용될 수 있게 하였다. 전체적인 구조는 공통-원인 구조를 물체간의 관계를 나타내는 단위로 사용하여 이를 결합해가며 구성되는데 이러한 방법은 베이지안 네트워크 설계를 효과적이게 한다. 제안하는 베이지안 네트워크 모델을 검증하기 위해 두 개의 베이지안 네트워크의 성능을 실험을 통해 검사하였는데 각각 $86.5\%$와 $89.6\%$의 정확도를 보였다.
본 논문에서는 진화연산을 이용하여 동적 귀환 신경망의 구조를 저차원화하는 방법을 제안한다. 일반적으로 진화연산을 개체군을 이용한 탐색 방법으로서 신경회로망의 여러 가지 다른 성질을 동시에 최적화할 필요가 있을 때 유용한 방법이다. 본 연구에서는 동적 귀환 신경망의 구조를 조차원화하기 위하여 진화 프로그래밍으로 신경망의 구조를 탐색하고, 진화전략으로 신경망의 연결강도를 학습시킴으로서 전체적인 구조를 저차원화하였다.신경망의 중간층 노드의 추가/삭제는 돌연변이 확률에 의하여 결정한다. 노드를 삭제할 경우에는 입력 연결강도의 총합이 가장 작은 노드를 삭제하고, 노드를 추가할 경우에는 미리 지정한 확률함스에 따라 노드를 추가한다. 그리고 추가된 노드와 다른 노드와의 연결방법은 서로 영향을 미칠 수 있는 모든 연결강도 중에서 확률적으로 선택하여 연결하였다. 마지막으로 제안한 저차원화 동적 귀환 신경망이 완전 연결된 신경망보다 더 좋은 성능을 얻을 수 있음을 예제로서 본 논문에서는 도립진자의 안정화 및 제어와 로봇 매니퓰레이터의 비주얼 서보잉에 적용하여 컴퓨터 시뮬레이션을 통하여 그 유효성을 확인한다.
최근 국내에도 협동로봇이 산업용로봇 시장에 진입하면서 제조업을 중심으로 설치되고 있으나 산업안전보건법 제93조 안전검사에 따른 산업용로봇의 안전규제를 그대로 적용받고 있어 안전보호 대책인 펜스와 매트를 설치하여야 하는 상황이었다. 협동로봇을 설치할 사업장은 ISO 10218-2과 ISO 12100에 따라 로봇-인간, 작업환경, 작업방식에 대한 위험성평가를 실시하고 위험도를 낮추어야 한다. 그러나, 국내 산업현장에 협동로봇의 도입 초기인 관계로 협동로봇에 대한 새로운 위험성도 알려지지 않고 있으며 위험성평가도 활성화되지 않아 사업장에서는 위험성평가가 낯설고 어렵게 받아들여지고 있다. 협동로봇의 위험성평가는 로봇과 인간이 공존하는 개념에서 출발해서 작업자의 이상행동, 인적 오류, 설비결함, 인터록 기능에 초점을 맞춰 실제 일어날 가능성이 높은 위험을 발굴하고 개선하는데 그 목적이 있으며 본 연구는 국내 자동차부품 제조업에 적용된 사례를 통해 입증하고자 하였다. 향후에도 협동로봇의 위험성평가를 다양한 공정 및 작업에 대해 사례 발굴함으로써 중소기업의 안전성 향상에 유용할 것으로 기대한다.
Data association is a process that matches a recent observation with known data set, which is used for the localization of mobile robots. Edges in topological maps have rich information which can be used for the data association. However, no systematic approach on using the edge data for data association has been reported. This paper proposes a systematic way of utilizing the edge data for data association. First, we explain a Local Generalized Voronoi Angle(LGA) to represent the edge data in 1-dimension. Second, we suggest a key factor extraction procedure from the LGA to reduce the number by $2^7-2^8$ times, for computational efficiency using the wavelet transformation. Finally we propose a way of data association using the key factors of the LGA. Simulations show that the proposed data association algorithm yields higher probability for similar edges in computationally efficient manner.
This paper proposes a novel resource allocation scheme which allows to guarantee the user-perceived service quality for various high-quality mobile multimedia service such as interactive game, tactile internet service, remote emergency medical service or remote disaster handling robot control to a certain level in the mobile networks. In our proposed scheme, Mean Opinion Score(MOS), which represents the degree of user satisfaction for perceived quality, is determined based on the delay limit allowable to each service. Moreover resources are allocated in consideration of this MOS. Simulation results show that our proposed scheme can decrease the outage probability in comparison with existing schemes Moreover it can increase the total throughput as well.
This paper presents an efficient method of extracting line segments from the occupancy grids in a grid map. The grid map is composed of 2-D grids that have both the occupancy and orientation probabilities using sonar sensors. We evaluate the orientation information of every grid when the occupancy probability of the grid is updated from sonar range data. To find the shape of an object in the map from orientation information, the orientations are clustered into several groups according to their values. The line segments are, then, extracted from the clusters based on Hough transform. Finally, a feature-based map is built with these line segments. The proposed method is illustrated with the results produced by sets of experiments in an indoor environment.
An empirical way of a covariance matrix which expresses the odometry uncertainty of mobile robots is proposed. This method utilizes PC-method which removes systematic errors of odometry. Once the systematic errors are removed, the odometry error can be modeled using the Gaussian probability distribution, and the parameters of the distribution can be represented by the covariance matrix. Experimental results show that the method yields $5{\%}$ and $2.3{\%}$ offset for the synchro and differential drive robots.
Fall detection and prevention technologies play a pivotal role in ensuring the well-being of individuals, particularly those living independently, where falls can result in severe consequences. This paper addresses the challenge of accurate and quick fall detection by proposing a Bayesian probability-based measure applied to surface electromyography (sEMG) signals. The proposed algorithm based on a Bayesian filter that divides the sEMG signal into transient and steady states. The ratio of posterior probabilities, considering the inclusion or exclusion of the transient state, serves as a scale to gauge the dominance of the transient state in the current signal. Experimental results demonstrate that this approach enhances the accuracy and expedites the detection time compared to existing methods. The study suggests broader applications beyond fall detection, anticipating future research in diverse human-robot interface benefiting from the proposed methodology.
본 논문에서는 초음파 및 적외선 센서와 무선 카메라를 장착한 소형 이동 로봇의 물체 검출 방법을 제시한다. 전방 물체의 존재 여부를 판단하기 위해, 초음파 센서는 초음파 발생 신호의 귀환시간, 적외선 센서는 감지한 적외선 아날로그신호의 양, 카메라는 영상 데이터 중 물체의 특징 등을 추출하여 그 결과를 융합함으로써 물체의 유무 또는 이동 로봇과 물체와의 거리를 판단하여 로봇의 움직임을 제어하는데 사용한다. 초음파와 적외선 센서는 물체의 유무와 물체의 대략의 거리를 예측하는 1차 센서로 사용되며 거리 계산결과와 실제 거리 값과의 오차는 5%이내이다. 영상처리에 의해 2차의 섬세한 물체 검출 및 추적을 수행하여 최종적으로 센서 융합에 의한 물체 검출율을 개선하였다. 영상처리방법은 물체와 배경 및 유사잡음들과의 강인한 분리를 위하여 고유색상정보와 움직임 정보 등의 사전정보를 활용하였으며, 형태의 변화가 수반되는 경우에도 유연한 대처능력을 갖도록 하기 위해 시그니처를 이용한 영역분할 방법을 통해 모든 후보영역내의 물체의 존재를 확인하고 목표 물체영역만을 검출하였다. 세가지 센서에 의한 대상 물체 검출 결과의 합은 최종적인 검출을 결정하는데 확률적 근거로 활용되며 각 개별 센서를 사용한 경우보다 최소 7% 이상의 검출율이 개선되었다.
본 연구는 농어촌 초등학교 저학년을 대상으로 로봇과 SW교육을 위한 메이커 교육 프로그램 환경 조성, 메이커교육 프로그램 개발 및 적용 연구를 수행하였다. 선행 메이커교육 모델을 기초로 초등학교 저학년 수준에 맞는 OMCSI 모형은 개발하였으며, 이를 기초로 5종의 WeDo 활용 초등 메이커 교육 프로그램을 개발하였다. 2020년 4월 1일 ~ 2020년 10월 30일까지 경상남도 대합초등학교의 2학년 10명을 대상으로 WeDo로봇 2.0을 활용한 초등 메이커 교육 프로그램을 적용한 결과는 다음과 같다. 컴퓨팅사고력의 분석능력에서 평균이 3.40점 올랐으며(t=-2.378, p=0.034), 설계능력에서도 평균이 3.30점 올랐다.(t=-2.329, p=0.040). 그리고 구현능력에서도 평균이 3.40점(t=-2.458, p=0.038)올랐다. 마지막으로 추론능력에서는 3.70점(t=-2.449, p=0.037)로 올랐다. 즉, 컴퓨팅 사고력 4개의 하위요소 모두가 유의확률 0.04이하로 사전사후 컴퓨팅 사고력의 점수 간에는 통계적인 유의미한 차이를 나타냈다. 따라서 WeDo 로봇을 활용한 초등 메이커 교육 프로그램'이 학생들의 컴퓨팅 사고력 향상에 매우 효과적으로 작용했다고 할 수 있다
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.