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Abstract: Data association is a process that matches a recent observation with known data set, which is used for the

localization of mobile robots. Edges in topological maps have rich information which can be used for the data association.

However, no systematic approach on using the edge data for data association has been reported. This paper proposes a

systematic way of utilizing the edge data for data association. First, we explain a Local Generalized Voronoi Angle(LGA)

to represent the edge data in 1-dimension. Second, we suggest a key factor extraction procedure from the LGA to reduce

the number by 27-28 times, for computational efficiency using the wavelet transformation. Finally we propose a way of data

association using the key factors of the LGA. Simulations show that the proposed data association algorithm yields higher

probability for similar edges in computationally efficient manner.
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1. Introduction
Topological maps are consist of nodes and edges. The nodes

are topologically meaningful places such as junctions, doors,

etc, and the edges are connections between nodes. The node

has been used for various data association algorithms [1–4]

which match a recent observation with known data set for

the localization of mobile robots.

However, little attention has been given on using the edge

data for the data association [5, 6], even though it has rich

information such as length, shape, effects of obstacles and

so on. Moreover, if cheap sensors(such as ultrasonic sensors)

are used, the edge has an advantage over the node because of

the large number of sensor readings. In the node, only a few

recent sensor readings, which are stained by sensor noises,

are contained. In the edge, however, a large number of ac-

cumulated data, whose noises could be removed by various

algorithms [7, 8], is included.

In this paper, a systematic and efficient way for the data

association especially for the edge is proposed. First, a

Local Generalized Voronoi graph Angle(LGA in short) is

explained as the most representative data in the edge. Re-

call that the Generalized Voronoi Graph(GVG in short) is a

topological representation, which consists of a set of points

that are equidistant to two or more objects(i .e. the medial

line). Thus the angle of the GVG can represent the detailed

shape of the edge. By using the LGA, large portions of the

edge data such as effects of obstacles, irregularity and overall

shape of the edge can be expressed in 1-dimension.

Even though the LGA is 1-dimensional, it consists of large

number of samples. For example, a LGA of an edge (whose

length and control frequency are 10m, 10Hz with 0.1m/sec

velocity) has 1000 samples. If a data association algorithm

such as [9] tries to compare a recent LGA observation with

large numbers of known LGAs, it will suffer from computa-

tional burden.
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To reduce the number of samples of the LGA, we developed

an efficient way that uses a key factor. The key factor is a

set of meaningful information in the LGA, and its number

is smaller than the LGA by 27-28 times. We adopted the

wavelet transformation [10], which divides the LGA into its

various frequencies, for key factor extraction.

Finally, a data association algorithm which uses the key fac-

tor of the LGA is suggested. This algorithm is computation-

ally efficient because it uses the key factor, and simulation

results show that the proposed data association algorithm

yields higher probability for similar edges.

This paper is organized as follows. In section 2., the local

GVG angle(LGA) is illustrated. The extraction of key fac-

tors from the LGA is suggested with a brief introduction of

the wavelet transformation in section 3.. Section 4.explains a

data association scheme using the key factors. In section 5.

, simulation results are given which validate the efficiency of

the proposed data association, and conclusion follows.

2. Local generalized Voronoi diagram angle
There are abundant data in the edge such as length, shape,

irregularities, width of edges, etc. For the efficient repre-

sentation, however, the most representative data should be

selected among them.

One possible candidate is the edge of the generalized Voronoi

graph(GVG in short) [1]. Recall that the GVG is a set

of points whose edges and nodes are equidistant to two or

more obstacles. Fig. 1 shows a connection of edges of the

GVG(denoted by Eα,β) from node α(Nα) to node β(Nβ).

In Eα,β , three meaningful data are included as follows:

• the effects of obstacles in the region A, B(Fig. 1).

• the irregularity of the edge in the region C(Fig. 1).

• the overall shape of the edge.

The Eα,β is a discrete set of position and heading angle of a

robot which had traced the GVG. Among these, the heading

angle contains three fore-mentioned data. Thus we select the

heading angle as the most representative data of the GVG

edge.
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Fig. 1. A connection of edges of the GVG denoted by Eα,β .

S

(a)

accumulated

odometry errors

(b) (c)

Fig. 2. An illustration of the local GVG angle(LGA): (a)

A robot had navigated from S to node Nβ through the

shaded path. (b) The angle of Eα,β(denoted by θ) is

affected by accumulated odometry errors, but (c) the

LGA is not.

However, the heading angle is affected by accumulated odom-

etry errors as shown in Fig. 2(a,b). So we suggest an Local

GVG Angle(LGA in short) where the ‘local’ denotes that the

origin of the LGA lies on the start node as shown in Fig. 2(c).

3. Extraction of key factors from the LGA
The LGA is designed for the data association which matches

a recent LGA observation with one of known LGAs. One

critical problem in the data association of the LGA is com-

putational burden. For example, let us consider the following

case. A topological map consists of 200 edges, and each edge

had been represented by the LGA. The number of samples in

each LGA is around 1000(10Hz control frequency and 10m

edge length with 0.1m/sec velocity). If a data association al-

gorithm in [9] is used1, the recent LGA should be compared

by 200 × 35 times. Then the total calculation is 4.86 × 107

which is intractable in real time.

A possible solution is to reduce the sample number of each

LGA by extracting key factors, whose number is smaller than

the LGA by 27-28 times. By using the key factors, the com-

putation of the previous example is reduced into 3.8 × 105 -

1.9 × 105.

The key factors can be extracted by using the wavelet trans-

1for the depth of inspection: 5, the number of edges for each node: 3.
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Fig. 3. Graphs of (a) the Haar scaling function φ(x) and

(b) the Haar wavelet ψ(x).

formation [10] which divides the LGA into its various fre-

quencies.

3.1. Wavelet transformation

This subsection briefly explains the wavelet transformation

by referring [10].

Definition 1: The Haar scaling function is defined as

φ(x) =

{
1, if 0 ≤ x < 1

0, elsewhere.

The graph of the Haar scaling function is given in Fig. 3(a).

Definition 2: Suppose j is any nonnegative integer. The

space of step functions at level j, denoted by Vj is defined

to be the space spanned by the set

{· · · , φ(2jx + 1), φ(2j), φ(2jx − 1), φ(2jx − 2), · · · }

over the real numbers. Vj is the space of piecewise con-

stant functions of finite support whose discontinuities are

contained in the set

{· · · ,−1/2j , 0, 1/2j , 2/2j , 3/2j , · · · }.

Definition 3: The Haar wavelet is the function

ψ(x) = φ(2x) − φ(2x − 1).

Its graph is given in Fig. 3(b).

Then following theorems holds.

Theorem 1: Let Wj be the space of functions of the form

∑
k∈Z

akψ(2jx − k) ak ∈ R

where we assume that only a finite number of ak are nonzero.

Wj is the orthogonal complement of Vj in Vj+1 and
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Fig. 4. An original signal is decomposed into A[1] and D[1]

,and A[1] is divided into A[2] and D[2].

Vj+1 = Vj ⊕ Wj

where A ⊕ B denotes that A and B are orthogonal to each

other.

Theorem 2: Suppose

fj(x) =
∑
k∈Z

aj
kφ(2jx − k) ∈ Vj .

Then fj can be decomposed as

fj = wj−1 + fj−1

where

wj−1 =
∑
k∈Z

bj−1
k ψ(2j−1x − k) ∈ Wj−1

fj−1 =
∑
k∈Z

aj−1
k φ(2j−1x − k) ∈ Vj−1

with

bj−1
k =

aj
2k − aj

2k+1

2
, aj−1

k =
aj
2k + aj

2k+1

2
.

Theorem 1, 2 explain that an original signal fj can be de-

composed as

fj = wj−1 + wj−2 + · · · + w0 + f0. (1)

To make it clear, let us define an approximation and a detail

of fi as

A[i] = fj−i

D[i] = wj−i

(2)

Here A[∗] reveals the overall shape of the original signal, and

D[∗] shows the time and magnitude of the frequency of level

[∗]. The physical meaning of the wavelet transformation is

that an original signal can be decomposed into the approxi-

mation and the detail of one lower level as shown in Fig. 4.

LGA

A
[1]

D
[1]

A
[  ]α

Fig. 5. The LGA can be decomposed into its various fre-

quencies by the wavelet transform. The LGA contains

the effects of obstacles, irregularity and overall shape.

Among these, the effects of obstacle and the irregularity

is expressed by the D[1], and the overall shape is revealed

by A[α] where α is close to the final level of decomposi-

tion.

3.2. Key factor extraction

Three characteristics of the edge are included in the LGA.

These are the effects of obstacles, the irregularity and the

overall shape of the GVG edge. Among these, the effects

of obstacles and the irregularity of the edge are reflected in

rapid changes of the LGA. Thus these two characteristics

correspond to the high frequency component of the LGA.

In contrast, the overall shape of the edge falls into the low

frequency part of the LGA.

In the wavelet transformation, the high frequency component

is reflected in the D[1](Fig. 5), and the low frequency part is

contained in A[α](Fig. 5) where α is close to the final level of

the decomposition.

Thus we define local key factors from D[1] to represent the

effects of obstacles and the irregularity of the edge. Also we

extract global key factors from A[α] to express the overall

shape of the edge.

3.2.1 Local key factor extraction

Let us denote the following terms for the local key factor

extraction.

• µ: the number of samples in a LGA.

• c(µ, k) = � µ
2k � where �(·)� denotes the least integer greater

than or equal to (·).
• A

i
: the i − th element of the set A.

• #(A): the number of samples in the set A.

The local key factor can be extracted as in the following.

Define a set of squares of D[1] as

V = {V
1
, V

2
, · · · , V

c(µ,1)
}, (3)

where V
i

= (D[1]

i
)2.
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(a) (b)

Fig. 6. Figure of (a) an Edge and (b) its plot of V.

For example, Fig. 6(a,b) show an edge and a plot of V where

the effects of obstacles and the irregularity of the edge is

contained. In Fig. 6, two half-circle obstacles in the region

A, B are reflected as two middle peaks, and one rectangular

obstacle in the region C is shown as two high peaks in the

center. The irregularity also expressed as small fluctuations

throughout all times.

Thus by dividing V according to its magnitude, the effects

of obstacles and the irregularity can be identified.

For the division, let us fix a reference value as maxv which is

the maximum angular acceleration of a robot. Also, define a

Depth of Local inspection(DL in short) to specify the number

of the division. Now define

Γ[l] = {(γ[l]
1 , t

[l]
1 ), (γ

[l]
2 , t

[l]
2 ), · · · , (γ

[l]

#(Γ[l])
, t

[l]

#(Γ[l])
)}, (4)

where

γ
[l]
i = the i − th signals among V

(·)
that satisfies⎧⎪⎨

⎪⎩
( 1
2
)l

maxv < V
(·)

≤ ( 1
2
)l−1

maxv if l �= DL,

0 < V
(·)

≤ ( 1
2
)DL−1

maxv if l = DL.

Here t
[l]
i is the time that γ

[l]
i occurred. Fig. 7(b-d) are ex-

amples of Γ[1], Γ[2], Γ[3] for DL = 3. In Fig. 7(b), one can

observe an existence of big obstacle. The effects of two small

obstacles are shown in Fig. 7(c), and the irregularity is re-

vealed in Fig. 7(d).

Now, the local key factors are defined as

Λ[l] =

#(Γ[l])∑
i=1

γ
[l]
i , (5)

Σ[l] =

⎡
⎣ 1

#(Γ[l])

#(Γ[l])∑
i=1

{
t
[l]
i − t

[l]
i

}2

⎤
⎦

1
2

, (6)

where t
[l]
i is the average of t

[l]

(·).

Here Λ[l] expresses the effects of obstacles and the irregular-

ity of the edge, and Σ[l] represent the standard deviation of

the location of the obstacles.

3.2.2 Global key factor extraction

The global key factors can be simply defined as in the fol-

lowing. Let us define a Depth of Global inspection(DG in

(a)
(b)

(c) (d)

Fig. 7. Γ values of (a) the V. (b-d) are Γ[1], Γ[2] and Γ[3]. In

(b), one can observe an existence of big obstacle. The

effects of two small obstacles are shown in (c), and the

irregularity is revealed in (d).

short) Then the approximation at level DG(A[DG]) is se-

lected as the global key factors. The DG should be selected

so that A[DG] is capable of representing the overall shape of

the LGA.

Our suggestion for the DG is 7-8 which approximates the

LGA by using c(µ, 7)-c(µ, 8) data (i .e. � µ
27 �-� µ

28 �).

3.2.3 Remarks on the key factors

The total number of the local key factors is 2 × DL, and

that of the global key factors is c(µ, DG) = � µ
2DG �. Thus

the number of the LGA is approximately reduced by 2DG

times because 2 × DL << µ.

One important question is whether these key factors effec-

tively reflect the characteristics of edges. This question will

be validated by a data association scheme and simulation

results in the following chapters.

4. Data association scheme
This section provides a data association scheme for the edges,

which uses the key factors in the section 3.. Let us assume

that a reference edge refE and a candidate edge canE is

given. From here on, the ref, can in the upper-left corner

denote the reference and the candidate.

For local key factor comparison, we define a one-to-one com-

parison

∆Λ(ref, can) =

DL∑
i=1

|refΛ[i] −can Λ[i]|,

∆Σ(ref, can) =

DL∑
i=1

|refΣ[i] −can Σ[i]|,
(7)

to represent the differences of the power and standard devi-

ation of two edge’s Λ[·], Σ[·].
In the global key factors, however, the one-to-one comparison

is unavailable, because the number of refA[DG] is not always

the same with that of canA[DG]. For the comparison, we first

define an algorithm called LCMcompare which extends the
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(a) (b)

Fig. 8. An example of the data number extension using the

least common multiple. In (a), the one-to-one compar-

ison is unavailable . However, after the extension, the

one-to-one comparison can be performed.

number of the refA[DG] and canA[DG] to their least common

multiple as follows:

———————————————————————–

Algoritm LCMcompare(Ea, Eb)

c ← least common multiple of #(Ea), #(Eb).

Ea(ext) = {Ea(ext)
1

= · · · = Ea(ext)
c/#(Ea)

= Ea
1

, · · · ,

Ea(ext)
c−#(Ea)/c+1

= · · · = Ea(ext)
c

= Ea
#(Ea)

}
Eb(ext) = {Eb(ext)

1

= · · · = Eb(ext)
c/#(Eb)

= Eb
1

, · · · ,

Eb(ext)
c−#(Eb)/c+1

= · · · = Eb(ext)
c

= Eb
#(Eb)

}
return 1

c

∑c
i=1 |Ea(ext)

i

− Eb(ext)
i

|
———————————————————————–

Fig. 8 shows an example of the data extension in the

LCMcompare. Here refA[DG] consists of 3 samples, and
canA[DG] has 4 samples. The least common multiple is 12.

Then refA[DG] is extended by 4(12/3) times, and canA[DG]

by 3(12/4) times for the one-to-one comparison.

Now, global key factor comparison is given as

∆ADG(ref, can) = LCMcompare(refADG,can ADG). (8)

Till now, three measures, ∆Λ, ∆Σ, ∆A[DG], are defined for a

candidate edge. For many candidate edges, these measures

should be normalized for even comparison. For that purpose,

define a normalizer

ℵ
(

f
i

)
=

1

#(f)

f
i∑#(f)

j=1 f
j

, (9)

for a set of functions f .

Finally, let us define a probability density function(pdf in

short) of canE to be refE as

P (canE =ref E) = ℵ(ℵ(∆Λ) × ℵ(∆Σ) × ℵ(∆A[DG])). (10)

Then, a data association of edges can be performed by se-

lecting pdfs whose values are larger than a certain threshold.

The threshold can be chosen as a multiple of a marginal

value. The marginal value is 1
η

where η is the numbers

of the candidates. Here P (canE =ref E) = 1
η

means

(a)

(b)

(c) (d)

Fig. 9. The reference and candidate edges that are used

for the first simulations. (a) is used as the reference and

the first candidate edge. (b-d) are examples of the other

38 candidate edges whose shapes are different from the

reference edge.

that no information can be provided for the candidate. If

P (canE =ref E) > 1
η
, the candidate is likely to be the refer-

ence edge and vice versa.

5. Simulation results
This section provides simulations to prove that the key fac-

tors effectively reveals the characteristics of the LGA. The

simulations are preformed for a robot with 36 distant sen-

sors. A Gaussian error, N (′, σ∈), whose 2σ corresponds to

20% of the odometry and the distance, is added to the real

odometry and the real distance.

The first simulation is performed as follows:

1. Get key factors from a reference edge(Fig. 9(a)).

2. Get key factors from a set of candidate edges which

consists of the reference edge and 39 edges with different

shapes(Fig. 9).

3. Calculate the pdf in Eq.(10) for all candidate edges.

4. Select edges whose pdf is larger than a certain threshold

as a data-associated edge.

Fig. 10 shows the simulation result. The thin line shows the

threshold(2/40) whose value is double of the marginal value.

In this figure, only the pdf of the reference edge(1) is higher

than the threshold, and the total sum of other 39 edges is

close to the marginal value.

The second simulation is conducted for candidate edges

which consist of a reference edge, a very similar edge with the

reference and a set of 18 similar edges as shown in Fig. 11.

The result is shown in Fig. 12, where the pdfs of the reference

edge(1,Fig. 11(a)) and the very similar edge(2,Fig. 11(b)) are

higher than the threshold(2/20). Suppose that the upper

obstacle in Fig. 12(a) is a door, and the door is temporarily
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Fig. 10. The probability density functions of the first simu-

lation.

(a) (b)

(c) (d)

Fig. 11. The reference and candidate edges that are used for

the second simulations. (a) is used as the reference and

the first candidate edge. (b) the second candidate edge

which is a very similar with the reference edge. (c,d)

are examples of the other 18 similar edges.

closed in Fig. 12(b), then the proposed algorithm will give

the highest probability to Fig. 12(b) among other candidates.

This means that the algorithm can be extended to dynamic

environment cases and this should be further investigated.

These two simulations validate that the key factors reflect

the meaningful data of the LGA in small numbers.

6. Conclusion
This paper proposed an systematic and efficient way of uti-

lizing the edge data for the data association.

First, we explained a Local Generalized Voronoi Angle(LGA)

to represent the edge data in 1-dimension. The LGA reflects

effects of obstacles, irregularity and overall shape of edges.

Second, we suggested a key factor extraction procedure from

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 12. The probability density functions of the second

simulation.

the LGA to reduce the number for computational efficiency.

The key factors consist of local key factor and global key

factor. The local key factor represents the effects of obstacles

and the irregularity of edges. The global key factor reveals

the overall shape of edges. The total number of key factors

are lower than the LGA by 27-28 times.

Finally we proposed a way of data association using the key

factors of the LGA. This data association algorithm is com-

putationally efficient because it uses the key factors.

Simulation results validated that the proposed data associa-

tion algorithm yields higher probability for similar edges in

computationally efficient manner.
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