References
- R. Rajagopalan, I. Litvan, and T.-P. Jung, "Fall prediction and prevention systems: Recent trends, challenges, and future research directions," Sensors, vol. 17, no. 11, pp. 2509, Nov., 2017, DOI: 10.3390/s17112509.
- B. Kwolek and M. Kepski, "Human fall detection on embedded platform using depth maps and wireless accelerometer," Computer Methods and Programs in Biomedicine, vol. 117, no. 3, pp. 489-501, Dec., 2014, DOI: 10.1016/j.cmpb.2014.09.005.
- L. Martinez-Villasenor, H. Ponce, J. Brieva, E. Moya-Albor, J. Nunez-Martinez, and C. Penafort-Asturiano, "Up-fall detection dataset: A multimodal approach," Sensors, vol. 19, no. 9, pp. 1988, Apr., 2019, DOI: 10.3390/s19091988.
- E. Casilari, J. A. Santoyo-Ramon, and J. M. Cano-Garcia, "Umafall: A multisensor dataset for the research on automatic fall detection," Procedia Computer Science, vol. 110, pp. 32-39, 2017, DOI: 10.1016/j.procs.2017.06.110.
- J. Cheng, X. Chen, and M. Shen, "A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals," IEEE Journal of Biomedical and Health Informatics, vol. 17, no. 1, pp. 38-45, Jan., 2013, DOI: 10.1109/TITB.2012.2226905.
- X. Xi, M. Tang, S. M. Miran, and Z. Luo, "Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors," Sensors, vol. 17, no. 6, pp. 1229, May, 2017, DOI: 10.3390/s17061229.
- X. Liu, H. Li, C. Lou, T. Liang, X. Liu, and H. Wang, "A new approach to fall detection based on improved dual parallel channels convolutional neural network," Sensors, vol. 19, no. 12, pp. 2814, Jun., 2019, DOI: 10.3390/s19122814.
- N. Sharma, C. M. Gregory, and W. E. Dixon, "Predictor-based compensation for electromechanical delay during neuromuscular electrical stimulation," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, no. 6, pp. 601-611, Dec., 2011, DOI: 10.1109/TNSRE.2011.2166405.
- H. Begovic, G.-Q. Zhou, T. Li, Y. Wang, and Y.-P. Zheng, "Detection of the electromechanical delay and its components during voluntary isometric contraction of the quadriceps femoris muscle," Frontiers in Physiology, vol. 5, Dec., 2014, DOI: 10.3389/fphys.2014.00494.
- S. U. Yavuz, A. Sendemir-Urkmez, and K. S. Turker, "Effect of gender, age, fatigue and contraction level on electromechanical delay," Clinical Neurophysiology, vol. 121, no. 10, pp. 1700-1706, Oct., 2010, DOI: 10.1016/j.clinph.2009.10.039.
- E. N. Kamavuako, E. J. Scheme, and K. B. Englehart, "Determination of optimum threshold values for emg time domain features; a multi-dataset investigation," Journal of Neural Engineering, vol. 13, no. 4, pp. 046011, Jun., 2016, DOI: 10.1088/1741-2560/13/4/046011.
- I. J. R. Martinez, A. Mannini, F. Clemente, A. M. Sabatini, and C. Cipriani, "Grasp force estimation from the transient emg using high-density surface recordings," Journal of Neural Engineering, vol. 17, no. 1, pp. 016052, Feb., 2020, DOI: 10.1088/1741-2552/ab673f.
- I. Conradsen, S. Beniczky, K. Hoppe, P. Wolf, and H. B. D. Sorensen, "Automated algorithm for generalized tonic-clonic epileptic seizure onset detection based on sEMG zero-crossing rate," IEEE Transactions on Biomedical Engineering, vol. 59, no. 2, pp. 579-585, Feb., 2012, DOI: 10.1109/TBME.2011.2178094.
- X. Li, P. Zhou, and A. S. Aruin, "Teager-kaiser energy operation of surface emg improves muscle activity onset detection," Annals of Biomedical Engineering, vol. 35, no. 9, pp. 1532-1538, May,2007, DOI: 10.1007/s10439-007-9320-z.
- S. E. Selvan, D. Allexandre, U. Amato, and G. H. Yue, "Unsupervised stochastic strategies for robust detection of muscle activation onsets in surface electromyogram," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 6, pp. 1279-1291, Jun., 2018, DOI: 10.1109/TNSRE.2018.2833742.
- Q. Xu, Y. Quan, L. Yang, and J. He, "An adaptive algorithm for the determination of the onset and offset of muscle contraction by emg signal processing," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 1, pp. 65-73, Jan., 2013, DOI: 10.1109/TNSRE.2012.2226916.
- E. S. Suviseshamuthu, D. Allexandre, U. Amato, B. D. Vecchia, and G. H. Yu, "Prolific: A fast and robust profile-likelihood-based muscle onset detection in electromyogram using discrete fibonacci search," IEEE Access, vol. 8, pp. 105362-105375, 2020, DOI: 10.1109/ACCESS.2020.3000693.
- N. M. Lopez, E. Orosco, and F. D. Sciascio, "Surface electromyographic onset detection based on statistics and information content," Journal of Physics: Conference Series, vol. 332, pp. 012043, 2011, DOI: 10.1088/1742-6596/332/1/012043.
- Y. Kuroda, I. Nisky, Y. Uranishi, M. Imura, A. M. Okamura, and O. Oshiro, "Novel algorithm for real-time onset detection of surface electromyography in step-tracking wrist movements," 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, pp. 2056-2059, 2013, DOI: 10.1109/EMBC.2013.6609936.
- J. Liu, D. Ying, W. Z. Rymer, and P. Zhou, "Robust muscle activity onset detection using an unsupervised electromyogram learning framework," PloS one, vol. 10, no. 6, pp. e0127990, Jun., 2015, DOI: 10.1371/journal.pone.0127990.
- I. Conradsen, S. Beniczky, K. Hoppe, P. Wolf, T. Sams, and H. B. D. Sorensen, "Seizure onset detection based on one semg channel," 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, pp. 7715-7718, 2011, DOI: 10.1109/IEMBS.2011.6091901.
- T. D. Sanger, "Bayesian filtering of myoelectric signals," Journal of neurophysiology, vol. 97, no. 2, pp. 1839-1845, Feb., 2007, DOI: 10.1152/jn.00936.2006.
- S. Park, W. K. Chung, and K. Kim, "Training-Free Bayesian Self-Adaptive Classification for sEMG Pattern Recognition Including Motion Transition," IEEE Transactions on Biomedical Engineering, vol. 67, no. 6, pp. 1775-1786, Jun., 2020, DOI: 10.1109/TBME.2019.2947089.