• Title/Summary/Keyword: Fall Prediction

Search Result 154, Processing Time 0.031 seconds

Predictive Modeling Design for Fall Risk of an Inpatient based on Bed Posture (침대 자세 기반 입원 환자의 낙상 위험 예측 모델 설계)

  • Kim, Seung-Hee;Lee, Seung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.51-62
    • /
    • 2022
  • This study suggests a design of predictive modeling for a hospital fall risk based on inpatients' posture. Inpatient's profile, medical history, and body measurement data along with basic information about a bed they use, were used to predict a fall risk and suggest an algorithm to determine the level of risk. Fall risk prediction is largely divided into two parts: a real-time fall risk evaluation and a qualitative fall risk exposure assessment, which is mostly based on the inpatient's profile. The former is carried out by recognizing an inpatient's posture in bed and extracting rule-based information to measure fall risk while the latter is conducted by medical staff who examines an inpatient's health status related to hospital fall risk and assesses the level of risk exposure. The inpatient fall risk is determined using a sigmoid function with recognized inpatient posture information, body measurement data and qualitative risk assessment results combined. The procedure and prediction model suggested in this study is expected to significantly contribute to tailored services for inpatients and help ensure hospital fall prevention and inpatient safety.

Vest-type System on Machine Learning-based Algorithm to Detect and Predict Falls

  • Ho-Chul Kim;Ho-Seong Hwang;Kwon-Hee Lee;Min-Hee Kim
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.43-54
    • /
    • 2024
  • Purpose: Falls among persons older than 65 years are a significant concern due to their frequency and severity. This study aimed to develop a vest-type embedded artificial intelligence (AI) system capable of detecting and predicting falls in various scenarios. Methods: In this study, we established and developed a vest-type embedded AI system to judge and predict falls in various directions and situations. To train the AI, we collected data using acceleration and gyroscope values from a six-axis sensor attached to the seventh cervical and the second sacral vertebrae of the user, considering accurate motion analysis of the human body. The model was constructed using a neural network-based AI prediction algorithm to anticipate the direction of falls using the collected pedestrian data. Results: We focused on developing a lightweight and efficient fall prediction model for integration into an embedded AI algorithm system, ensuring real-time network optimization. Our results showed that the accuracy of fall occurrence and direction prediction using the trained fall prediction model was 89.0% and 78.8%, respectively. Furthermore, the fall occurrence and direction prediction accuracy of the model quantized for embedded porting was 87.0 % and 75.5 %, respectively. Conclusion: The developed fall detection and prediction system, designed as a vest-type with an embedded AI algorithm, offers the potential to provide real-time feedback to pedestrians in clinical settings and proactively prepare for accidents.

Prediction of the Shear Strength of Oil Contaminated Clay using Fall Cone (폴콘을 이용한 유류 오염 점토지반의 전단강도 예측)

  • Song, Young-Woo;Lee, Han-Sok;Park, Jun-Boum
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.107-113
    • /
    • 2010
  • This paper presents the prediction of shear strength of oil contaminated clay using fall cone test used to determine the liquid limit of soil. The penetration depth of fall cone is related to water content of soil. Laboratory vane shear can also be related to water content. To explore the relative correlation between penetration depth of fall cone and laboratory vane shear, both fall cone tests and laboratory vane shear test were carried out with water contents of soil. The developed empirical relationships in this studys showed that the shear strength is reduced to 3.9% with 1% increase of oil content. And, the lesser initial water content of contaminated clay, the more shear strength of contaminated clay is affected by oil content.

Workflow Based on Pipelining for Performance Improvement of Volcano Disaster Damage Prediction System (화산재해 피해 예측 시스템의 성능 향상을 위한 파이프라인 기반 워크플로우)

  • Heo, Daeyoung;Lee, Donghwan;Hwang, Suntae
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.281-288
    • /
    • 2015
  • A volcano disaster damage prediction system supports decision making for counteracting volcanic disasters by simulating meteorological condition and volcanic eruptions. In this system, a program called Fall3D generates predicted results for the diffusion of ash after a volcanic eruption on the basis of meteorological information. The relevant meteorological information is generated by a weather numerical prediction model known as Weather Research & Forecasting (WRF). In order to reduce the entire processing time without modifying these two simulation programs, pipelining can be used by partly executing Fall3D whenever the hourly (partial) results of WRF are generated. To reduce the processing time, successor programs such as Fall3D require that certain features be suspended until the part of the results that is based on prior calculation is generated by a predecessor. Even though Fall3D does not have a suspend or resume feature, pipelining effect can be produced by using the program's restart feature, which resumes simulation from the previous session. In this study, we suggest a workflow that can control the execution type.

Fall Prediction Model for Community-dwelling Elders based on Gender (지역사회 노인의 성별에 따른 낙상 예측모형)

  • Yun, Eun Suk
    • Journal of Korean Academy of Nursing
    • /
    • v.42 no.6
    • /
    • pp.810-818
    • /
    • 2012
  • Purpose: This study was done to explore factors relating to number of falls among community-dwelling elders, based on gender. Methods: Participants were 403 older community dwellers (male=206, female=197) aged 60 or above. In this study, 8 variables were identified as predictive factors that can result in an elderly person falling and as such, supports previous studies. The 8 variables were categorized as, exogenous variables; perceived health status, somatization, depression, physical performance, and cognitive state, and endogenous variables; fear of falling, ADL & IADL and frequency of falls. Results: For men, ability to perform ADL & IADL (${\beta}_{32}$=1.84, p<.001) accounted for 16% of the variance in the number of falls. For women, fear of falling (${\beta}_{31}$=0.14, p<.05) and ability to perform ADL & IADL (${\beta}_{32}$=1.01, p<.001) significantly contributed to the number of falls, accounting for 15% of the variance in the number of falls. Conclusion: The findings from this study confirm the gender-based fall prediction model as comprehensive in relation to community-dwelling elders. The fall prediction model can effectively contribute to future studies in developing fall prediction and intervention programs.

Fundamental Research for Video-Integrated Collision Prediction and Fall Detection System to Support Navigation Safety of Vessels

  • Kim, Bae-Sung;Woo, Yun-Tae;Yu, Yung-Ho;Hwang, Hun-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.91-97
    • /
    • 2021
  • Marine accidents caused by ships have brought about economic and social losses as well as human casualties. Most of these accidents are caused by small and medium-sized ships and are due to their poor conditions and insufficient equipment compared with larger vessels. Measures are quickly needed to improve the conditions. This paper discusses a video-integrated collision prediction and fall detection system to support the safe navigation of small- and medium-sized ships. The system predicts the collision of ships and detects falls by crew members using the CCTV, displays the analyzed integrated information using automatic identification system (AIS) messages, and provides alerts for the risks identified. The design consists of an object recognition algorithm, interface module, integrated display module, collision prediction and fall detection module, and an alarm management module. For the basic research, we implemented a deep learning algorithm to recognize the ship and crew from images, and an interface module to manage messages from AIS. To verify the implemented algorithm, we conducted tests using 120 images. Object recognition performance is calculated as mAP by comparing the pre-defined object with the object recognized through the algorithms. As results, the object recognition performance of the ship and the crew were approximately 50.44 mAP and 46.76 mAP each. The interface module showed that messages from the installed AIS were accurately converted according to the international standard. Therefore, we implemented an object recognition algorithm and interface module in the designed collision prediction and fall detection system and validated their usability with testing.

Bayesian Onset Measure of sEMG for Fall Prediction (베이지안 기반의 근전도 발화 측정을 이용한 낙상의 예측)

  • Seongsik Park;Keehoon Kim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.213-220
    • /
    • 2024
  • Fall detection and prevention technologies play a pivotal role in ensuring the well-being of individuals, particularly those living independently, where falls can result in severe consequences. This paper addresses the challenge of accurate and quick fall detection by proposing a Bayesian probability-based measure applied to surface electromyography (sEMG) signals. The proposed algorithm based on a Bayesian filter that divides the sEMG signal into transient and steady states. The ratio of posterior probabilities, considering the inclusion or exclusion of the transient state, serves as a scale to gauge the dominance of the transient state in the current signal. Experimental results demonstrate that this approach enhances the accuracy and expedites the detection time compared to existing methods. The study suggests broader applications beyond fall detection, anticipating future research in diverse human-robot interface benefiting from the proposed methodology.

Implementation of Falling Accident Monitoring and Prediction System using Real-time Integrated Sensing Data

  • Bonghyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.2987-3002
    • /
    • 2023
  • In 2015, the number of senior citizens aged 65 and over in Korea was 6,662,400, accounting for 13.1% of the total population. Along with these social phenomena, risk information related to the elderly is increasing every year. In particular, a fall accident caused by a fall can cause serious injury to an elderly person, so special attention is required. Therefore, in this paper, we implemented a system that monitors fall accidents and informs them in real time to minimize damage caused by falls. To this end, beacon-based indoor location positioning was performed and biometric information based on an integrated module was collected using various sensors. In other words, a multi-functional sensor integration module was designed based on Arduino to collect and monitor user's temperature, heart rate, and motion data in real time. Finally, through the analysis and prediction of measurement signals from the integrated module, damage from fall accidents can be reduced and rapid emergency treatment is possible. Through this, it is possible to reduce the damage caused by a fall accident, and rapid emergency treatment will be possible. In addition, it is expected to lead a new paradigm of safety systems through expansion and application to socially vulnerable groups.

Children's Mental Models of the Free-fall of Objects (물체의 자유낙하에 대한 아동의 정신모형 연구)

  • Lee, Myung-Ja
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.3
    • /
    • pp.389-399
    • /
    • 1999
  • The purpose of this study was to identify children's mental models of the free-fall objects. This study examined children's prediction and observation about the free-fall of objects. The experimental procedure involved conducting interviews with first-, third-, fifth-, and seventh grade students. The interview had three phases: Prediction, explanation, and observation. During the prediction phase, the object pairs which varied on the dimensions of size, weight, shape, color were presented to students. The students were asked to predict what would happen if the objects were dropped simultaneously. During the explanation phase, the students were asked to explain how they arrived at their answers. During the observation phase, the students observed the free-fall of the object pairs and were asked to describe what they saw. The results showed as follows. (1) Fifth-and seventh grade students made more correct predictions than first- and third grade students. (2) The conflict problems, object pairs involving the dimensions of size and weight, were the most difficult for students to accurately predict. (3) With regard to observations, there was a non-significant effect of grade, indicating equivalence in the number of correct observations made by first-, third-, fifth-, and seventh graders. (4) The conflict problems were the most difficult for students to correctly observe. (5) First- and third grade students showed a significant difference between prediction and observation about the free-fall of objects. However. no difference was found in the fifth- and seventh grade students.

  • PDF

Validation on Adult Fall Assessment Tools: Focusing on Hospitalized Patients in a General Hospital (낙상위험 사정도구의 타당도 비교: 일개 종합병원의 입원 환자를 중심으로)

  • Kim, Hayng Suk;Choi, Eun Hee
    • Journal of muscle and joint health
    • /
    • v.31 no.2
    • /
    • pp.65-74
    • /
    • 2024
  • Purpose: This study was conducted to verify fall predictive power and reasonable fall risk assessment tool by a comparative analysis of the sensitivity, specificity, positive forecast and negative forecast of each tool by applying Morse Fall Scale (MFS), Johns Hopkins Fall Risk Assessment Tool (JHFRAT), and Fall Assessment Scale-Korean version (FAS-K) through electronic medical records to adult patients hospitalized in a general hospital in Korea. Methods: We performed a retrospective evaluation study from January to December 2018, 123 fall groups experiencing falls during hospitalization and 123 non-falls groups were selected. Data presented a reasonable assessment tool that predicts and distinguishes fall high-risk patients through area comparison based on the ROC curve for each tool. Results: In the ROC curve analysis by fall risk assessment group, the AUC of MFS is shown to be .706 (good), JHFRAT is shown to be .649 (sufficient) and FAS-K is shown to be .804 (very good). FAS-K at a cut-off score of 4, sensitivity, specificity, and positive and negative prediction values were 83.7%, 60.2%, 67.8%, and 78.7%, respectively. Conclusion: Based on the above findings, it is believed that the FAS-K was presented as a suitable and reasonable tool for predicting falls for adult patients in general hospitals.