DOI QR코드

DOI QR Code

Mock Circulatory Robot with Artificial Aorta for Reproduction of Blood Pressure Waveform

혈압 파형 재현을 위한 인공 대동맥 기반 모의 순환계 로봇

  • Received : 2024.04.02
  • Accepted : 2024.04.15
  • Published : 2024.05.31

Abstract

As the importance of cardiovascular health is highlighted, research on its correlation with blood pressure, the most important indicator, is being actively conducted. Therefore, extensive clinical data is essential, but the measurement of the central arterial blood pressure waveform must be performed invasively within the artery, so the quantity and quality are limited. This study suggested a mock circulatory robot and artificial aorta to reproduce the blood pressure waveform generated by the overlap of forward and reflected waves. The artificial aorta was fabricated with biomimetic silicone to mimic the physiological structure and vascular stiffness of the human. A pressurizing chamber was implemented to prevent distortion of the blood pressure waveform due to the strain-softening of biomimetic silicone. The reproduced central arterial blood pressure waveforms have similar magnitude, shape, and propagation characteristics to humans. In addition, changes in blood pressure waveform due to aging were also reproduced by replacing an artificial aorta with various stiffness. It can be expanded to construct a biosignal database and health sensor testing platform, a core technology for cardiovascular health-related research.

Keywords

References

  1. "Cardiovascular diseases (CVDs)," [Online], https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds), Accessed: Apr. 15, 2024.
  2. K. Bartels, S. A. Esper, and R. H. Thiele, "Blood pressure monitoring for the anesthesiologist: A practical review," Anesth. Analg., vol. 122, no. 6, pp. 1866-1879, Jun., 2016, DOI: 10.1213/ANE.0000000000001340.
  3. W. W. Nichols and M. F. O'Rourke, McDonald's blood flow in arteries theoretical, experimental and clinical principles. CRC press, 2011, DOI: 10.1016/0306-3623(92)90079-y.
  4. T. Teeaar, M. Serg, K. Paapstel, J. Kals, M. Kals, M. Zilmer, J. Eha, and P. Kampus, "Heart rate reduction decreases central blood pressure in sick sinus syndrome patients with a permanent cardiac pacemaker," J. Hum. Hypertens., vol. 32, no. 5, pp. 377-384, Mar., 2018, DOI: 10.1038/s41371-018-0051-4.
  5. J. Rajeswari and M. Jagannath, "Advances in biomedical signal and image processing - A systematic review," Informatics in Medicine Unlocked, vol. 8, pp. 13-19, Jan., 2017, DOI: 10.1016/j.imu.2017.04.002.
  6. J. P. Mynard, M. R. Davidson, D. J. Penny, and J. J. Smolich, "A simple, versatile valve model for use in lumped parameter and one-dimensional cardiovascular models," Int. j. numer. method. biomed. eng., vol. 28, no. 6-7, pp. 626-641, Jun.-Jul., 2012, DOI: 10.1002/cnm.1466.
  7. N. Westerhof and B. E. Westerhof, "Waves and Windkessels reviewed," Artery Res., vol. 18, pp. 102-111, Jun., 2017, DOI: 10.1016/j.artres.2017.03.001.
  8. J.-H. Jeong, Y.-M. Kim, B. Lee, J. Hong, J. Kim, S.-Y. Woo, T.-H. Yang, and Y.-H. Park, "Design and evaluation of enhanced mock circulatory platform simulating cardiovascular physiology for medical palpation training," Appl. Sci., vol. 10, no. 16, pp. 5433, Jul., 2020, DOI: 10.3390/APP10165433.
  9. F. Nestler, A. P. Bradley, S. J. Wilson, D. L. Timms, O. H. Frazier, and W. E. Cohn, "A hybrid mock circulation loop for a total artificial heart," Artif. Organs, vol. 38, no. 9, pp. 775-782, Sept., 2014, DOI: 10.1111/aor.12380.
  10. E. S. Rapp, S. R. Pawar, and R. G. Longoria, "Hybrid Mock Circulatory Loop Simulation of Extreme Cardiac Events," IEEE Transactions on Biomedical Engineering, vol. 69, no. 9, pp. 2883-2892, Sept., 2022, DOI: 10.1109/TBME.2022.3156963.
  11. S.-S. Chio, E. M. Urbina, J. LaPointe, J. Tsai, and G. S. Berenson, "Korotkoff sound versus oscillometric cuff sphygmomanometers: Comparison between auscultatory and DynaPulse blood pressure measurements," Journal of the American Society of Hypertension, vol. 5, no. 1, pp. 12-20, Jan.-Feb., 2011, DOI: 10.1016/j.jash. 2010.10.005.
  12. D. L. Newman and S. E. Greenwald, "Validity of the Moens-Korteweg Equation," The Arterial System, Springer, 1978, pp. 109-115, DOI: 10.1007/978-3-642-67020-6_10.
  13. K. A. Groenewegen, H. M. Den Ruijter, G. Pasterkamp, J. F. Polak, M. L. Bots, and S. A. E. Peters, "Vascular age to determine cardiovascular disease risk: A systematic review of its concepts, definitions, and clinical applications," European Journal of Preventive Cardiology, vol. 23, no. 3, pp. 264-274, Feb., 2016, DOI: 10.1177/2047487314566999.
  14. J.-H. Jeong, B. Lee, J. Hong, C. Min, A. R. Persad, T.-H. Yang, and Y.-H. Park, "Cardiovascular hardware simulator and artificial aorta-generated central blood pressure waveform database according to various vascular ages for cardiovascular health monitoring applications," Computers in Biology and Medicine, vol. 172, pp. 108224, Apr., 2024, DOI: 10.1016/j.compbiomed.2024.108224.
  15. B. Lee, J.-H. Jeong, J. Hong, and Y.-H. Park, "Correlation analysis of human upper arm parameters to oscillometric signal in automatic blood pressure measurement," Sci. Reports, vol. 12, no. 1, pp. 1-11, Nov., 2022, DOI: 10.1038/s41598-022-24264-9.
  16. J.-H. Jeong, B. Lee, J. Hong, T.-H. Yang, and Y.-H. Park, "Reproduction of human blood pressure waveform using physiology-based cardiovascular simulator," Sci. Report, vol. 13, no. 1, pp. 1-15, May, 2023, DOI: 10.1038/s41598-023-35055-1.