• Title/Summary/Keyword: Privacy-Preserving Technologies

Search Result 23, Processing Time 0.024 seconds

Robustness Analysis of a Novel Model-Based Recommendation Algorithms in Privacy Environment

  • Ihsan Gunes
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1341-1368
    • /
    • 2024
  • The concept of privacy-preserving collaborative filtering (PPCF) has been gaining significant attention. Due to the fact that model-based recommendation methods with privacy are more efficient online, privacy-preserving memory-based scheme should be avoided in favor of model-based recommendation methods with privacy. Several studies in the current literature have examined ant colony clustering algorithms that are based on non-privacy collaborative filtering schemes. Nevertheless, the literature does not contain any studies that consider privacy in the context of ant colony clustering-based CF schema. This study employed the ant colony clustering model-based PPCF scheme. Attacks like shilling or profile injection could potentially be successful against privacy-preserving model-based collaborative filtering techniques. Afterwards, the scheme's robustness was assessed by conducting a shilling attack using six different attack models. We utilize masked data-based profile injection attacks against a privacy-preserving ant colony clustering-based prediction algorithm. Subsequently, we conduct extensive experiments utilizing authentic data to assess its robustness against profile injection attacks. In addition, we evaluate the resilience of the ant colony clustering model-based PPCF against shilling attacks by comparing it to established PPCF memory and model-based prediction techniques. The empirical findings indicate that push attack models exerted a substantial influence on the predictions, whereas nuke attack models demonstrated limited efficacy.

Privacy-Preserving DNA Matching Protocol (프라이버시를 보호하는 DNA 매칭 프로토콜)

  • Noh, Geontae
    • Journal of Internet Computing and Services
    • /
    • v.19 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • Due to advances in DNA sequencing technologies, its medical value continues to grow. However, once genome data leaked, it cannot be revoked, and disclosure of personal genome information impacts a large group of individuals. Therefore, secure techniques for managing genomic big data should be developed. We first propose a privacy-preserving inner product protocol for large data sets using the homomorphic encryption of Gentry et al., and then we introduce an efficient privacy-preserving DNA matching protocol based on the proposed protocol. Our efficient protocol satisfies the requirements of correctness, confidentiality, and privacy.

Semantics-aware Obfuscation for Location Privacy

  • Damiani, Maria Luisa;Silvestri, Claudio;Bertino, Elisa
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-160
    • /
    • 2008
  • The increasing availability of personal location data pushed by the widespread use of location-sensing technologies raises concerns with respect to the safeguard of location privacy. To address such concerns location privacy-preserving techniques are being investigated. An important area of application for such techniques is represented by Location Based Services (LBS). Many privacy-preserving techniques designed for LBS are based on the idea of forwarding to the LBS provider obfuscated locations, namely position information at low spatial resolution, in place of actual users' positions. Obfuscation techniques are generally based on the use of geometric methods. In this paper, we argue that such methods can lead to the disclosure of sensitive location information and thus to privacy leaks. We thus propose a novel method which takes into account the semantic context in which users are located. The original contribution of the paper is the introduction of a comprehensive framework consisting of a semantic-aware obfuscation model, a novel algorithm for the generation of obfuscated spaces for which we report results from an experimental evaluation and reference architecture.

A Survey on Security Schemes based on Conditional Privacy-Preserving in Vehicular Ad Hoc Networks

  • Al-Mekhlafi, Zeyad Ghaleb;Mohammed, Badiea Abdulkarem
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.105-110
    • /
    • 2021
  • Contact between Vehicle-to-vehicle and vehicle-to-infrastructural is becoming increasingly popular in recent years due to their crucial role in the field of intelligent transportation. Vehicular Ad-hoc networks (VANETs) security and privacy are of the highest value since a transparent wireless communication tool allows an intruder to intercept, tamper, reply and erase messages in plain text. The security of a VANET based intelligent transport system may therefore be compromised. There is a strong likelihood. Securing and maintaining message exchange in VANETs is currently the focal point of several security testing teams, as it is reflected in the number of authentication schemes. However, these systems have not fulfilled all aspects of security and privacy criteria. This study is an attempt to provide a detailed history of VANETs and their components; different kinds of attacks and all protection and privacy criteria for VANETs. This paper contributed to the existing literature by systematically analyzes and compares existing authentication and confidentiality systems based on all security needs, the cost of information and communication as well as the level of resistance to different types of attacks. This paper may be used as a guide and reference for any new VANET protection and privacy technologies in the design and development.

Improving Security in Ciphertext-Policy Attribute-Based Encryption with Hidden Access Policy and Testing

  • Yin, Hongjian;Zhang, Leyou;Cui, Yilei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2768-2780
    • /
    • 2019
  • Ciphertext-policy attribute-based encryption (CP-ABE) is one of the practical technologies to share data over cloud since it can protect data confidentiality and support fine-grained access control on the encrypted data. However, most of the previous schemes only focus on data confidentiality without considering data receiver privacy preserving. Recently, Li et al.(in TIIS, 10(7), 2016.7) proposed a CP-ABE with hidden access policy and testing, where they declare their scheme achieves privacy preserving for the encryptor and decryptor, and also has high decryption efficiency. Unfortunately, in this paper, we show that their scheme fails to achieve hidden access policy at first. It means that any adversary can obtain access policy information by a simple decisional Diffie-Hellman test (DDH-test) attack. Then we give a method to overcome this shortcoming. Security and performance analyses show that the proposed scheme not only achieves the privacy protection for users, but also has higher efficiency than the original one.

Privacy-Preserving Cloud Data Security: Integrating the Novel Opacus Encryption and Blockchain Key Management

  • S. Poorani;R. Anitha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3182-3203
    • /
    • 2023
  • With the growing adoption of cloud-based technologies, maintaining the privacy and security of cloud data has become a pressing issue. Privacy-preserving encryption schemes are a promising approach for achieving cloud data security, but they require careful design and implementation to be effective. The integrated approach to cloud data security that we suggest in this work uses CogniGate: the orchestrated permissions protocol, index trees, blockchain key management, and unique Opacus encryption. Opacus encryption is a novel homomorphic encryption scheme that enables computation on encrypted data, making it a powerful tool for cloud data security. CogniGate Protocol enables more flexibility and control over access to cloud data by allowing for fine-grained limitations on access depending on user parameters. Index trees provide an efficient data structure for storing and retrieving encrypted data, while blockchain key management ensures the secure and decentralized storage of encryption keys. Performance evaluation focuses on key aspects, including computation cost for the data owner, computation cost for data sharers, the average time cost of index construction, query consumption for data providers, and time cost in key generation. The results highlight that the integrated approach safeguards cloud data while preserving privacy, maintaining usability, and demonstrating high performance. In addition, we explore the role of differential privacy in our integrated approach, showing how it can be used to further enhance privacy protection without compromising performance. We also discuss the key management challenges associated with our approach and propose a novel blockchain-based key management system that leverages smart contracts and consensus mechanisms to ensure the secure and decentralized storage of encryption keys.

Differential Privacy Technology Resistant to the Model Inversion Attack in AI Environments (AI 환경에서 모델 전도 공격에 안전한 차분 프라이버시 기술)

  • Park, Cheollhee;Hong, Dowon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.589-598
    • /
    • 2019
  • The amount of digital data a is explosively growing, and these data have large potential values. Countries and companies are creating various added values from vast amounts of data, and are making a lot of investments in data analysis techniques. The privacy problem that occurs in data analysis is a major factor that hinders data utilization. Recently, as privacy violation attacks on neural network models have been proposed. researches on artificial neural network technology that preserves privacy is required. Therefore, various privacy preserving artificial neural network technologies have been studied in the field of differential privacy that ensures strict privacy. However, there are problems that the balance between the accuracy of the neural network model and the privacy budget is not appropriate. In this paper, we study differential privacy techniques that preserve the performance of a model within a given privacy budget and is resistant to model inversion attacks. Also, we analyze the resistance of model inversion attack according to privacy preservation strength.

A Privacy-aware Graph-based Access Control System for the Healthcare Domain

  • Tian, Yuan;Song, Biao;Hassan, M.Mehedi.;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2708-2730
    • /
    • 2012
  • The growing concern for the protection of personal information has made it critical to implement effective technologies for privacy and data management. By observing the limitations of existing approaches, we found that there is an urgent need for a flexible, privacy-aware system that is able to meet the privacy preservation needs at both the role levels and the personal levels. We proposed a conceptual system that considered these two requirements: a graph-based, access control model to safeguard patient privacy. We present a case study of the healthcare field in this paper. While our model was tested in the field of healthcare, it is generic and can be adapted to use in other fields. The proof-of-concept demos were also provided with the aim of valuating the efficacy of our system. In the end, based on the hospital scenarios, we present the experimental results to demonstrate the performance of our system, and we also compared those results to existing privacy-aware systems. As a result, we ensured a high quality of medical care service by preserving patient privacy.

Privacy-Preserving Collection and Analysis of Medical Microdata

  • Jong Wook Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.5
    • /
    • pp.93-100
    • /
    • 2024
  • With the advent of the Fourth Industrial Revolution, cutting-edge technologies such as artificial intelligence, big data, the Internet of Things, and cloud computing are driving innovation across industries. These technologies are generating massive amounts of data that many companies are leveraging. However, there is a notable reluctance among users to share sensitive information due to the privacy risks associated with collecting personal data. This is particularly evident in the healthcare sector, where the collection of sensitive information such as patients' medical conditions poses significant challenges, with privacy concerns hindering data collection and analysis. This research presents a novel technique for collecting and analyzing medical data that not only preserves privacy, but also effectively extracts statistical information. This method goes beyond basic data collection by incorporating a strategy to efficiently mine statistical data while maintaining privacy. Performance evaluations using real-world data have shown that the propose technique outperforms existing methods in extracting meaningful statistical insights.

Systematic Research on Privacy-Preserving Distributed Machine Learning (프라이버시를 보호하는 분산 기계 학습 연구 동향)

  • Min Seob Lee;Young Ah Shin;Ji Young Chun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.76-90
    • /
    • 2024
  • Although artificial intelligence (AI) can be utilized in various domains such as smart city, healthcare, it is limited due to concerns about the exposure of personal and sensitive information. In response, the concept of distributed machine learning has emerged, wherein learning occurs locally before training a global model, mitigating the concentration of data on a central server. However, overall learning phase in a collaborative way among multiple participants poses threats to data privacy. In this paper, we systematically analyzes recent trends in privacy protection within the realm of distributed machine learning, considering factors such as the presence of a central server, distribution environment of the training datasets, and performance variations among participants. In particular, we focus on key distributed machine learning techniques, including horizontal federated learning, vertical federated learning, and swarm learning. We examine privacy protection mechanisms within these techniques and explores potential directions for future research.