• 제목/요약/키워드: Prime ring

검색결과 357건 처리시간 0.024초

ON GENERALIZED LIE IDEALS IN SEMI-PRIME RINGS WITH DERIVATION

  • Ozturk, M. Ali;Ceven, Yilmaz
    • East Asian mathematical journal
    • /
    • 제21권1호
    • /
    • pp.1-7
    • /
    • 2005
  • The object of this paper is to study($\sigma,\;\tau$)-Lie ideals in semi-prime rings with derivation. Main result is the following theorem: Let R be a semi-prime ring with 2-torsion free, $\sigma$ and $\tau$ two automorphisms of R such that $\sigma\tau=\tau\sigma$=, U be both a non-zero ($\sigma,\;\tau$)-Lie ideal and subring of R. If $d^2(U)=0$, then d(U)=0 where d a non-zero derivation of R such that $d\sigma={\sigma}d,\;d\tau={\tau}d$.

  • PDF

TOPOLOGICAL CONDITIONS OF NI NEAR-RINGS

  • Dheena, P.;Jenila, C.
    • 대한수학회논문집
    • /
    • 제28권4호
    • /
    • pp.669-677
    • /
    • 2013
  • In this paper we introduce the notion of NI near-rings similar to the notion introduced in rings. We give topological properties of collection of strongly prime ideals in NI near-rings. We have shown that if N is a NI and weakly pm near-ring, then $Max(N)$ is a compact Hausdorff space. We have also shown that if N is a NI near-ring, then for every $a{\in}N$, $cl(D(a))=V(N^*(N)_a)=Supp(a)=SSpec(N){\setminus}int\;V(a)$.

STRONG P-CLEANNESS OF TRIVIAL MORITA CONTEXTS

  • Calci, Mete B.;Halicioglu, Sait;Harmanci, Abdullah
    • 대한수학회논문집
    • /
    • 제34권4호
    • /
    • pp.1069-1078
    • /
    • 2019
  • Let R be a ring with identity and P(R) denote the prime radical of R. An element r of a ring R is called strongly P-clean, if there exists an idempotent e such that $r-e=p{\in}P$(R) with ep = pe. In this paper, we determine necessary and sufficient conditions for an element of a trivial Morita context to be strongly P-clean.

Posner's First Theorem for *-ideals in Prime Rings with Involution

  • Ashraf, Mohammad;Siddeeque, Mohammad Aslam
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.343-347
    • /
    • 2016
  • Posner's first theorem states that if R is a prime ring of characteristic different from two, $d_1$ and $d_2$ are derivations on R such that the iterate $d_1d_2$ is also a derivation of R, then at least one of $d_1$, $d_2$ is zero. In the present paper we extend this result to *-prime rings of characteristic different from two.

FULLY PRIME MODULES AND FULLY SEMIPRIME MODULES

  • Beachy, John A.;Medina-Barcenas, Mauricio
    • 대한수학회보
    • /
    • 제57권5호
    • /
    • pp.1177-1193
    • /
    • 2020
  • Fully prime rings (in which every proper ideal is prime) have been studied by Blair and Tsutsui, and fully semiprime rings (in which every proper ideal is semiprime) have been studied by Courter. For a given module M, we introduce the notions of a fully prime module and a fully semiprime module, and extend certain results of Blair, Tsutsui, and Courter to the category subgenerated by M. We also consider the relationship between the conditions (1) M is a fully prime (semiprime) module, and (2) the endomorphism ring of M is a fully prime (semiprime) ring.

DERIVATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS

  • Choi, Young-Ho;Lee, Eun-Hwi;Ahn, Gil-Gwon
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.305-317
    • /
    • 2000
  • It is well-known that every derivation on a commutative Banach algebra maps into its radical. In this paper we shall give the various algebraic conditions on the ring that every Jordan derivation on a noncommutative ring with suitable characteristic conditions is zero and using this result, we show that every continuous linear Jordan derivation on a noncommutative Banach algebra maps into its radical under the suitable conditions.

WHEN NILPOTENTS ARE CONTAINED IN JACOBSON RADICALS

  • Lee, Chang Ik;Park, Soo Yong
    • 대한수학회지
    • /
    • 제55권5호
    • /
    • pp.1193-1205
    • /
    • 2018
  • We focus our attention on a ring property that nilpotents are contained in the Jacobson radical. This property is satisfied by NI and left (right) quasi-duo rings. A ring is said to be NJ if it satisfies such property. We prove the following: (i) $K{\ddot{o}}the^{\prime}s$ conjecture holds if and only if the polynomial ring over an NI ring is NJ; (ii) If R is an NJ ring, then R is exchange if and only if it is clean; and (iii) A ring R is NJ if and only if so is every (one-sided) corner ring of R.

CERTAIN DISCRIMINATIONS OF PRIME ENDOMORPHISM AND PRIME MATRIX

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • 제14권2호
    • /
    • pp.259-268
    • /
    • 1998
  • In this paper, for a commutative ring R with an identity, considering the endomorphism ring $End_R$(M) of left R-module $_RM$ which is (quasi-)injective or (quasi-)projective, some discriminations of prime endomorphism were found as follows: each epimorphism with the irreducible(or simple) kernel on a (quasi-)injective module and each monomorphism with maximal image on a (quasi-)projective module are prime. It was shown that for a field F, any given square matrix in $Mat_{n{\times}n}$(F) with maximal image and irreducible kernel is a prime matrix, furthermore, any given matrix in $Mat_{n{\times}n}$(F) for any field F can be factored into a product of prime matrices.

  • PDF