DOI QR코드

DOI QR Code

FULLY PRIME MODULES AND FULLY SEMIPRIME MODULES

  • Beachy, John A. (Department of Mathematical Sciences Northern Illinois University) ;
  • Medina-Barcenas, Mauricio (Facultad de Ciencias Fisico Matematicas Benemerita Universidad Aut onoma de Puebla)
  • Received : 2019.09.26
  • Accepted : 2020.07.08
  • Published : 2020.09.30

Abstract

Fully prime rings (in which every proper ideal is prime) have been studied by Blair and Tsutsui, and fully semiprime rings (in which every proper ideal is semiprime) have been studied by Courter. For a given module M, we introduce the notions of a fully prime module and a fully semiprime module, and extend certain results of Blair, Tsutsui, and Courter to the category subgenerated by M. We also consider the relationship between the conditions (1) M is a fully prime (semiprime) module, and (2) the endomorphism ring of M is a fully prime (semiprime) ring.

References

  1. J. A. Beachy, M-injective modules and prime M-ideals, Comm. Algebra 30 (2002), no. 10, 4649-4676. https://doi.org/10.1081/AGB-120014660 https://doi.org/10.1081/AGB-120014660
  2. J. A. Beachy and Y. Tolooei, Modules which satisfy Gabriel's condition H, preprint, 2019.
  3. L. Bican, P. Jambor, T. Kepka, and P. Nemec, Prime and coprime modules, Fund. Math. 107 (1980), no. 1, 33-45. https://doi.org/10.4064/fm-107-1-33-45 https://doi.org/10.4064/fm-107-1-33-45
  4. W. D. Blair and H. Tsutsui, Fully prime rings, Comm. Algebra 22 (1994), no. 13, 5389-5400. https://doi.org/10.1080/00927879408825136 https://doi.org/10.1080/00927879408825136
  5. J. Castro Perez, M. Medina Barcenas, J. Rios Montes, and A. Zaldivar Corichi, On semiprime Goldie modules, Comm. Algebra 44 (2016), no. 11, 4749-4768. https://doi.org/10.1080/00927872.2015.1113290
  6. J. Castro Perez, M. Medina Barcenas, J. Rios Montes, and A. Zaldivar Corichi, On the structure of Goldie modules, Comm. Algebra 46 (2018), no. 7, 3112-3126. https://doi.org/10.1080/00927872.2017.1404078
  7. J. Castro Perez and J. Rios Montes, Prime submodules and local Gabriel correspondence in ], Comm. Algebra 40 (2012), no. 1, 213-232. https://doi.org/10.1080/ 00927872.2010.529095 https://doi.org/10.1080/00927872.2010.529095
  8. R. C. Courter, Rings all of whose factor rings are semi-prime, Canad. Math. Bull. 12 (1969), 417-426. https://doi.org/10.4153/CMB-1969-052-2 https://doi.org/10.4153/CMB-1969-052-2
  9. N. V. Dung, D. V. Huynh, P. F. Smith, and R. Wisbauer, Extending modules, Pitman Research Notes in Mathematics Series, 313, Longman Scientific & Technical, Harlow, 1994.
  10. K. R. Goodearl, von Neumann regular rings, Monographs and Studies in Mathematics, 4, Pitman (Advanced Publishing Program), Boston, MA, 1979.
  11. T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4684-0406-7
  12. M. Medina-Barcenas and A. C. Ozcan, Primitive submodules, co-semisimple and regular modules, Taiwanese J. Math. 22 (2018), no. 3, 545-565. https://doi.org/10.11650/tjm/171102 https://doi.org/10.11650/tjm/171102
  13. F. Raggi, J. Rios, H. Rincon, R. Fernandez-Alonso, and C. Signoret, Prime and irreducible preradicals, J. Algebra Appl. 4 (2005), no. 4, 451-466. https://doi.org/10.1142/S0219498805001290
  14. F. Raggi, J. Rios, H. Rincon, R. Fernandez-Alonso, and C. Signoret, Semiprime preradicals, Comm. Algebra 37 (2009), no. 8, 2811-2822. https://doi.org/10.1080/00927870802623476 https://doi.org/10.1080/00927870802623476
  15. R. Wisbauer, Foundations of module and ring theory, revised and translated from the 1988 German edition, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
  16. R. Wisbauer, Modules and algebras: bimodule structure and group actions on algebras, Pitman Monographs and Surveys in Pure and Applied Mathematics, 81, Longman, Harlow, 1996.