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Abstract. Posner’s first theorem states that if R is a prime ring of characteristic different

from two, d1 and d2 are derivations on R such that the iterate d1d2 is also a derivation of

R, then at least one of d1, d2 is zero. In the present paper we extend this result to ∗-prime

rings of characteristic different from two.

1. Introduction

Throughout the paper, R will represent an associative ring. R is called a prime
ring if xRy = {0} implies x = 0 or y = 0. It is called semiprime if xRx = {0} implies
x = 0. Given an integer n > 1, a ring R is said to be n-torsion free, if for x ∈ R,
nx = 0 implies x = 0. An additive mapping x 7→ x∗ of R into itself is called an
involution on R if it satisfies the conditions; (i) (x∗)∗ = x, (ii) (xy)∗ = y∗x∗ for all
x, y ∈ R. A ring R equipped with an involution ‘∗’ is called a ring with involution
or a ∗-ring. A ring R with involution ‘∗’ is said to be ∗-prime if aRb = aRb∗ = {0},
where a, b ∈ R (equivalently aRb = a∗Rb = {0}, where a, b ∈ R) implies that either
a = 0 or b = 0. It is to be noted that every prime ring having an involution ‘∗’ is ∗-
prime but the converse is not true in general. Of course, if Ro denotes the opposite
ring of a prime ring R, then R × Ro equipped with the exchange involution ∗ex,
defined by ∗ex(x, y) = (y, x), is ∗ex-prime but not prime. An ideal I of R is called a
∗-ideal of R if I∗ = I. Let R be a ∗-prime ring, a ∈ R and aRa = {0}. This implies
that aRaRa∗ = {0} also. Now ∗-primeness of R insures that a = 0 or aRa∗ = {0}.
aRa∗ = {0} together with aRa = {0} gives us a = 0. Thus we conclude that every
∗-prime ring is a semiprime ring.

An additive mapping d : R −→ R is said to be a derivation on R if d(xy) =
d(x)y + xd(y) holds for all x, y ∈ R. Let I be a nonzero ideal of R. Then an
additive mapping d : I −→ R is called a derivation from I to R if d(xy) = d(x)y +

*Corresponding Author.
Received December 5, 2014; accepted March 11, 2016.
2010 Mathematics Subject Classification: 16N60,16W10,16W25.
Key words and phrases: Rings with involution, derivation, ∗-prime ring and ∗-ideal.

343



344 Mohammad Ashraf and Mohammad Aslam Siddeeque

xd(y) holds for all x, y ∈ I. In the year 1957, E. C. Posner initiated the study of
derivations in rings and proved two very striking theorems. These results have been
generalized by several authors in different directions see [1,4,5] for reference where
further references can be found. Posner’s first theorem [8, Theorem 1] states that
if R is a prime ring of characteristic not 2 and the iterate of two derivations is also
a derivation, then at least one of them is zero. In this paper we extend this result
to ∗-prime rings of characteristic different from 2.

2. Preliminary Results

We begin with the following lemmas which are essential for developing the proof
of our main result.

Lemma 2.1 If R is a ∗-prime ring of characteristic different from 2, then R is
2-torsion free.

Proof. Suppose that x ∈ R such that 2x = 0. This implies that 2xrs = 0 for all
r, s ∈ R i.e., xR(2s) = {0} for all s ∈ R. Since characteristic of R is different from
2 and R 6= {0}, this provides us a nonzero element l ∈ R such that 2l 6= 0. Now we
conclude that xR(2l) = {0} = xR(2l)∗. Finally ∗-primeness of R provides us x = 0
and hence R is 2-torsion free. 2

Lemma 2.2 Let R be a ∗-prime ring and I a nonzero ∗-ideal of R. If d : I −→ R is
a derivation such that d commutes with ‘∗’. If a is an element of R and ad(x) = 0
(resp., d(x)a = 0) for all x ∈ I, then either a = 0 or d = 0.

Proof. Replacing x by xy, where y ∈ I in the relation ad(x) = 0, we obtain
that ad(x)y + axd(y) = 0, i.e., axd(y) = 0 for all x, y ∈ I. Replacing x by xs
where s ∈ R in the latter relation, we arrive at axsd(y) = 0, i.e., axRd(y) = {0}
for all x, y ∈ I. Since d commutes with ‘∗’ and I is a ∗-ideal, we obtain that
axRd(y) = {0} = axR{d(y)}∗ for all x, y ∈ I. Now ∗-primeness of R provides us
d = 0 or ax = 0 for all x ∈ I. Putting tx where t ∈ R for x in the latter relation,
we arrive at atx = 0, i.e., aRx = {0} for all x ∈ I. Since I is a ∗-ideal of R,
we also have aRx = aRx∗ = {0}. Now ∗-primeness of R and I 6= {0} imply that
a = 0. Similarly we can also show that d(x)a = 0 for all x ∈ I implies that a = 0 or
d = 0. 2

3. Main Results

The study of derivation in ring was initiated by E. C. Posner [8] in the year
1957, who proved two very striking theorems. Posner’ first theorem deals with the
composition of two derivations on a ring and states that if R is a prime ring of
characteristic different from 2 and d1, d2 are derivations of R such that the iterate
d1d2 is also a derivation, then at least one of d1 and d2 is zero. We extend Posner’s
first theorem in the setting of ∗-prime rings having characteristic different from 2
and establish the following:
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Theorem 3.1 Let R be a ∗-prime ring of characteristic not 2, I a nonzero ∗-ideal
and d1, d2 : I −→ R are derivations such that the iterate d1d2 : I −→ R is also a
derivation. If at least one of d1 and d2 commutes with ‘∗’, then d1 = 0 or d2 = 0.

Proof. We divide the proof in following two cases:

Case I : Let us suppose that d1 commutes with ‘∗’. Since the map d1d2 : I −→ R
is a derivation, it is obvious that d2(I) ⊆ I and d1d2(xy) = d1d2(x)y +xd1d2(y) for
all x, y ∈ I. As d1, d2 : I −→ R are derivations, we obtain that

d1d2(xy) = d1(d2(xy))
= d1(d2(x)y + xd2(y))
= d1d2(x)y + d2(x)d1(y) + d1(x)d2(y) + xd1d2(y).

By above relations we conclude that

d2(x)d1(y) + d1(x)d2(y) = 0 for all x, y ∈ I. (3.1)

Now replacing x by xd2(z), where z ∈ I in the relation (3.1) we obtain that
d2(xd2(z))d1(y) + d1(xd2(z))d2(y) = 0 for all x, y, z ∈ I. This gives us
d2(x)d2(z)d1(y) + xd2

2(z)d1(y) + d1(x)d2(z)d2(y) + xd1d2(z)d2(y) = 0. In view of
equation (3.1) and using the fact that d2(I) ⊆ I, we find that (d2(d2(z))d1(y) +
d1(d2(z))d2(y)) = 0. Hence we arrive at

d2(x)d2(z)d1(y) + d1(x)d2(z)d2(y) = 0 for all x, y, z ∈ I. (3.2)

Using the relation (3.1) and Lemma 2.1, the relation (3.2) reduces to d1(x)d2(z)d2(y) =
0 for all x, y, z ∈ I. Now Lemma 2.2 provides us either d1 = 0 or d2(z)d2(y) = 0 for
all y, z ∈ I. If the first case holds then nothing to do, if not we have d2(z)d2(y) = 0
for all y, z ∈ I. Replacing y by yz in the latter relation and using the same ar-
gument as above again we arrive at d2(z)yd2(z) = 0 for all y, z ∈ I. Replacing
y by sy where s ∈ R in the latter relation we arrive at d2(z)Ryd2(z) = {0} i.e.,
yd2(z)Ryd2(z) = {0} for all y, z ∈ I. Since R is a ∗-prime ring, it is semiprime also
and hence we obtain that yd2(z) = 0 for all y, z ∈ I. Replacing y by yt where t ∈ R
in the latter relation we arrive at ytd2(z) = 0 i.e., yRd2(z) = {0} for all y, z ∈ I.
But we know that I is a ∗-ideal of R. Therefore we also get y∗Rd2(z) = {0} for all
y, z ∈ I. Finally ∗-primeness of R and I 6= {0} imply that d2 = 0.

Case II : Let us suppose that d2 commutes with ‘∗’. From Case I, we have
d1(x)d2(z)d2(y) = 0 for all x, y, z ∈ I. Now Lemma 2.2 provides us either d2 = 0 or
d1(x)d2(z) = 0 for all x, z ∈ I. If first case holds then nothing to do, if not we have
d1(x)d2(z) = 0 for all x, z ∈ I. Again using Lemma 2.2 we conclude that either
d1 = 0 or d2 = 0. 2

The following example shows that the hypothesis of ∗-primeness is crucial in
the above theorem.
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Example 3.1 Let R =
{(

x 0
y z

)
| x, y, z, 0 ∈ Z

}
, where Z is the set of integers.

Consider the map (
x 0
y z

)
7→

(
x 0
y z

)∗

of R into itself such that
(

x 0
y z

)∗
=

(
z 0
−y x

)
.

It is easy to verify that ‘∗’ is an involution of the ring R, where characteristic of R is

different from 2. Further if we set I =
{(

0 0
y 0

)
| y, 0 ∈ Z

}
, then I is a nonzero

∗-ideal of R. Now consider the maps d1, d2, : I −→ R defined by

d1

(
0 0
y 0

)
=

(
0 0
y 0

)
, d2

(
0 0
y 0

)
=

(
0 0
−y 0

)
.

Then it is obvious to observe that d1 and d2 are derivations and ‘∗’ commutes with
d1. Further it can be also shown that the iterate d1d2 : I −→ R is a derivation and
R is not a ∗-prime ring. However neither d1 = 0 nor d2 = 0.

The following example shows that the hypothesis of ”characteristic different
from 2” is crucial in the above theorem.

Example 3.2 Suppose that R = Z2 < x > ×Z2 < x >, where Z2 < x > is the
polynomial ring over Z2. Let us consider the map (f(x), g(x)) 7→ (f(x), g(x))∗ of
R into itself such that (f(x), g(x))∗ = (g(x), f(x)). It is easy to check that ‘∗’ is
an involution of R, known as the exchange involution denoted by ∗ex and R is a
∗ex-prime ring. Further assume that I =< x2 > is the ideal of Z2 < x > generated
by x2 ∈ Z2 < x > . Then it can be easily shown that I = I×I is a nonzero ∗ex-ideal
of R. Next consider D1, D2 : I −→ R such that D1(f(x), g(x)) = (d(f(x)), d(g(x)))
and D2(f(x), g(x)) = (d(f(x)), 0), where d is the usual differentiation in Z2 < x > .
It is obvious to see that D1, D2 and D1D2 : I −→ R are derivations. Moreover, R
is a ring of characteristic 2 and D1∗ex = ∗exD1. However D1 6= 0 and D2 6= 0.

Now taking I = R in the above theorem we obtain the following:

Corollary 3.1 Let R be a ∗-prime ring of characteristic not 2 and d1, d2 derivations
of R such that the iterate d1d2 is also a derivation of R. If at least one of d1 and
d2 commutes with ‘∗’, then d1 = 0 or d2 = 0.

Now using the above theorem we can obtain Posner’s first theorem.
Corollary 3.2 ([8], Theorem 1) Let R be a prime ring of characteristic not 2 and
d1, d2 derivations of R such that the iterate d1d2 is also a derivation, then one at
least of d1, d2 is zero.
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Proof. Since R is a prime ring of characteristic not 2, consider R = R ×Ro, which
is clearly a ∗ex-prime ring of characteristic not 2. Set I = R, which is a nonzero
∗ex-ideal of R. Now define D1, D2 : I −→ R by D1(x, y) = (d1(x), d1(y)) and
D2(x, y) = (d2(x), d2(y)). Using hypothesis it can be easily seen that D1, D2 : I −→
R are derivations and the iterate D1D2 : I −→ R is also a derivation. Moreover
D1∗ex = ∗exD1. In view of the Theorem 3.1 we deduce that either D1 = 0 or
D2 = 0, in turn we obtain that either d1 = 0 or d2 = 0. 2
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