Prediction of concrete properties is an important issue for structural engineers and different methods are developed for this purpose. Most of these methods are based on experimental data and use measured data for parameter estimation. Three typical methods of output estimation are Categorized Linear Regression (CLR), Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN). In this paper a statistical cleansing method based on CLR is introduced. Afterwards, MLR and ANN approaches are also employed to predict the compressive strength of structural lightweight aggregate concrete. The valid input domain is briefly discussed. Finally the results of three prediction methods are compared to determine the most efficient method. The results indicate that despite higher accuracy of ANN, there are some limitations for the method. These limitations include high sensitivity of method to its valid input domain and selection criteria for determining the most efficient network.
KSCE Journal of Civil and Environmental Engineering Research
/
v.32
no.6D
/
pp.599-605
/
2012
It is important to decide traffic opening time for construction plan of epoxy asphalt pavement. For this purpose, strength prediction model of epoxy asphalt concrete is required. In this study, Marshall stability was measured according to temperature and time for making strength properties equation. Strength prediction model was developed using chemical kinetics considering temperature variation. The traffic opening time of epoxy asphalt pavement on bridge deck has been predicted using the developed model. The prediction and actual traffic opening times were different by 17-days, because weathers of year 2009-2011 used in prediction model were different from weather of year 2012. When the prediction model used the actually measured temperatures of pavement, the difference between real opening time and prediction opening time was two days. The correlation analysis result between measured strength and prediction strength revealed that the $R^2$ using accurate temperature of pavement was 0.95. An improved precise prediction result is to be obtained if the prediction model uses accurate temperature data of pavement.
Proceedings of the Korea Concrete Institute Conference
/
2005.05b
/
pp.133-136
/
2005
Compressive strength of recycled aggregate concrete was tested by the core and by the non-destructive testing. A prediction model of compressive strength considering the replacement level of recycled aggregate was suggested by multi-regression analysis and was compared with test results. Also, Test results showed that the ratio of compressive strength by core and non-destructive testing to actual was somewhat affected by the replacement level of recycled aggregate.
International Journal of Concrete Structures and Materials
/
v.7
no.4
/
pp.295-301
/
2013
This paper deals with the interfacial effects of silica fume (SF) and styrene-butadiene rubber (SBR) on compressive strength of concrete. Analyzing the compressive strength results of 32 concrete mixes performed over two water-binder ratios (0.35, 0.45), four percentages replacement of SF (0, 5, 7.5, and 10 %) and four percentages of SBR (0, 5, 10, and 15 %) were investigated. The results of the experiments were showed that in 5 % of SBR, compressive strength rises slightly, but when the polymer/binder materials ratio increases, compressive strength of concrete decreases. A mathematical model based on Abrams' law has been proposed for evaluation strength of SF-SBR concretes. The proposed model provides the opportunity to predict the compressive strength based on time of curing in water (t), and water, SF and SBR to binder materials ratios that they are shown with (w/b), (s) and (p).This understanding model might serve as useful guides for commixture concrete admixtures containing of SF and SBR. The accuracy of the proposed model is investigated. Good agreements between them are observed.
Proceedings of the Korea Concrete Institute Conference
/
1994.04a
/
pp.47-52
/
1994
In designing of slabs, a prediction of the punching shear capacity is one of important concerns. In this study, an equation was proposed to predict the punching shear strength of reinforced concrete slabs. The proposed equation depends on concrete compression strength, steel ratio, effective depth and slab radial length. The good correlation exists between the predicted punching shear strength and the measured.
This paper presents the detailed experimental and analytical investigation on the evolution of static (Es) and dynamic modulus of elasticity (Ed) of concrete having 0%, 35%, and 50% FA used as partial cement replacement. Destructive and non-destructive tests were conducted on cylindrical specimens to evaluate the compressive strength and MoE of concrete in compression at the age of 28, 56, 90, and 150 days for all mixes. Experimental results show that the concrete having 35% FA achieved compressive strength and MoE similar to plain concrete at the age of 90 days, while 50% FA concrete attained satisfactory compressive strength and MoE at the age of 150 days. The comprehensive statistical analysis has been carried out in two ways on the basis of the experimental results. Firstly, the 28-day crushing strength of plain concrete in compression was used to design the models for the prediction of Es and Ed of fly ash concrete at any age and percentage replacement of FA. Secondly, using the values of UPV and RHN, models have been developed to predict the age or time-dependent Es and Ed of fly ash concrete. These models will be helpful in assessing the Es and Ed of fly ash concrete without knowing the 28-day crushing strength of plain concrete in compression in the laboratory. Hence, the suggested models in the present study will be beneficial in conducting the health assessment of fly ash based concrete structures.
Journal of Korean Society of Industrial and Systems Engineering
/
v.33
no.4
/
pp.122-129
/
2010
High-performance concrete (HPC) is a new terminology used in concrete construction industry. Several studies have shown that concrete strength development is determined not only by the water-to-cement ratio but also influenced by the content of other concrete ingredients. HPC is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed at demonstrating the possibilities of adapting artificial neural network (ANN) to predict the comprresive strength of HPC. Mahalanobis Distance (MD) outlier detection method used for the purpose increase prediction ability of ANN. The detailed procedure of calculating Mahalanobis Distance (MD) is described. The effects of outlier compared with before and after artificial neural network training. MD outlier detection method successfully removed existence of outlier and improved the neural network training and prediction performance.
Proceedings of the Korea Concrete Institute Conference
/
2006.05b
/
pp.485-488
/
2006
The shrinkage properties of the high strength concrete using the cement of Type I, Type III and Type IV was examined, and the following results were obtained. (1) Consideration of the autogenous shrinkage when evaluating appropriately the shrinkage properties of the high strength concrete is indispensable. (2) The autogenous shrinkage prediction expression of JSCE can estimate the properties of autogenous shrinkage of the cement made from korea with in general sufficient accuracy. (3) It is necessary to advance examination which used Korean aggregate about dry shrinkage from now on, and to attain highly accuracy of the autogenous shrinkage prediction expression.
International Journal of Concrete Structures and Materials
/
v.2
no.1
/
pp.57-62
/
2008
When the yield line theory is used to estimate the ultimate strength of a concrete barrier, it is of primary importance that the correct assumption is made for the failure mode of the barrier. In this study, a static test was performed on two full-scale concrete barrier specimens of Korean standard shape that simulate the actual behavior of a longitudinally continuous barrier. This was conducted in order to verify the failure mode presented in the AASHTO LRFD specification. The resulting shape of the yield lines differed from that presented in AASHTO when subjected to an equivalent crash load. Furthermore, the ultimate strengths of the specimens were lower than the theoretical prediction. The main causes of these differences can be attributed to the characteristics of the barrier shape and to a number of limitations associated with the classical yield line theory. Therefore, a revised failure mode with corresponding prediction equations of the strength were proposed based on the yield lines observed in the test. As a result, a strength that was more comparable to that of the test could be obtained. The proposed procedure can be used to establish more realistic test levels for barriers that have a similar shape.
Kim, Han-Sol;Jang, Jong-Min;Min, Tae-Beom;Lee, Han-Seung
Proceedings of the Korean Institute of Building Construction Conference
/
2020.06a
/
pp.58-59
/
2020
The change of temperature and humidity in early-age concrete has a great influence on the durability of the structure. In this study, a reliable wireless sensor network system and a concrete embedded type Compressive strength prediction sensor were designed using the Arduino platform. The accuracy of the compressive strength prediction sensor was verified through a mock-up experiment, and it was confirmed that the experiment had sufficient accuracy to be used in the field environment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.