References
- ACI 209 (1999), Prediction of Creep and Shrinkage, and Temperature Effects in Concrete Structures, American Concrete Institute, Farmington Hills, MI, USA.
- Alkroosh, I.S. and Sarker, P.K. (2019), "Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming", Comput. Concrete, 24(4), 295-302. https://doi.org/10.12989/cac.2019.24.4.295.
- ASTM C469 (2002), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, USA.
- ASTM C494 (1999), Standard Specification for Chemical Admixtures for Concrete, ASTM International, West Conshohocken, PA, USA.
- Bazant, Z.P. and Baweja, S. (1996), "Short form of creep and shrinkage prediction model B3 for structures of medium sensitivity", Mater. Struct., 29(10), 587-593. https://doi.org/10.1007/BF02485965.
- Benhelal, E., Zahedi, G., Shamsaei, E. and Bahadori, A. (2013), "Global strategies and potentials to curb CO2 emissions in cement industry", J. Clean. Prod., 51, 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049.
- Bouzoubaa, N., Zhang, M.H. and Malhotra, V.M. (2001), "Mechanical properties and durability of concrete made with high-volume fly ash blended cements using a coarse fly ash", Cement Concrete Res., 31(10), 1393-1402. https://doi.org/10.1016/S0008-8846(01)00592-0.
- BS 8110 (1986), Structural Use of Concrete: Code of Practice for Design and Construction, British Standards Part 1, The British Standards Institution, London, UK.
- CEB-FIB Model Code (2010), FIB Bulletin 55, Vol. 1, CEB-FIB, Lausanne, Switzerland.
- de Araujo Thomaz, W., Miyaji, D.Y. and Possan, E. (2021), "Comparative study of dynamic and static Young's modulus of concrete containing basaltic aggregates", Case Stud. Constr. Mater., 15, e00645. https://doi.org/10.1016/j.cscm.2021.e00645.
- Dong, C.X., Kwan, A.K. and Ho, J.C. (2015), "A constitutive model for predicting the lateral strain of confined concrete", Eng. Struct., 91, 155-166. https://doi.org/10.1016/j.engstruct.2015.02.014.
- Dong, C.X., Kwan, A.K. and Ho, J.C. (2017), "Effects of external confinement on structural performance of concrete-filled steel tubes", J. Constr. Steel Res., 132, 72-82. https://doi.org/10.1016/j.jcsr.2016.12.024.
- Duran-Herrera, A., Juarez, C.A., Valdez, P. and Bentz, D.P. (2011), "Evaluation of sustainable high-volume fly ash concretes", Cement Concrete Compos., 33(1), 39-45. https://doi.org/10.1016/j.cemconcomp.2010.09.020.
- Emiroglu, M., Yildiz, S. and Kelestemur, M.H. (2015), "A study on dynamic modulus of self-consolidating rubberized concrete", Comput. Concrete, 15(5), 795-805. https://doi.org/10.12989/cac.2015.15.5.795.
- Gardner, N.J. and Lockman, M.J. (2001), "Design provisions for drying shrinkage and creep of normal-strength concrete", J. Mater., 98(2), 159-167.
- Han, S.H., Kim, J.K. and Park, Y.D. (2003), "Prediction of compressive strength of fly ash concrete by new apparent activation energy function", Cement Concrete Res., 33(7), 965-971. https://doi.org/10.1016/S0008-8846(03)00007-3.
- Hasanbeigi, A., Morrow, W., Masanet, E., Sathaye, J. and Xu, T. (2013), "Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China", Energ. Policy, 57, 287-297. https://doi.org/10.1016/j.enpol.2013.01.053.
- Hasanbeigi, A., Price, L. and Lin, E. (2012), "Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review", Renew. Sustainab. Energ. Rev., 16(8), 6220-6238. https://doi.org/10.1016/j.rser.2012.07.019.
- Hashmi, A.F., Shariq, M. and Baqi, A. (2021), "An investigation into age-dependent strength, elastic modulus and deflection of low calcium fly ash concrete for sustainable construction", Constr. Build. Mater., 283, 122772. https://doi.org/10.1016/j.conbuildmat.2021.122772.
- Huang, C.H., Lin, S.K., Chang, C.S. and Chen, H.J. (2013), "Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash", Constr. Build. Mater., 46, 71-78. https://doi.org/10.1016/j.conbuildmat.2013.04.016.
- IS 10262 (2009), Recommended Guidelines for Concrete Mix Design, Bureau of Indian Standards, New Delhi, India.
- IS 13311 Part-I (1992), Non-Destructive Testing of Concrete - Ultrasonic Pulse Velocity, Bureau of Indian Standards, New Delhi, India.
- IS 13311 Part-II (1992), Non-Destructive Testing of Concrete - Rebound Hammer, Bureau of Indian Standards, New Delhi, India.
- IS 2386 Part-I (1997), Methods of Tests for Aggregates for Concrete-Particle Size and Shape, Bureau of Indian Standards, New Delhi, India.
- IS 2386 Part-III (1997), Methods of Tests for Aggregates for Concrete-Specific Gravity, Density, Voids, Absorption and Bulking, Bureau of Indian Standards, New Delhi, India.
- IS 3812 Part I (2003), Pulverized Fuel Ash - Specification Part 1 for Use as Pozzolana in Cement, Bureau of Indian Standards, New Delhi, India.
- IS 383 (2016), Indian Standard Specification for Coarse and Fine Aggregates from Natural Sources for Concrete, Bureau of Indian Standards, New Delhi, India.
- IS 4031 Part-IV (1988), Methods of Physical Tests for Hydraulic Cement-Determination of Consistency of Standard Cement Paste, Bureau of Indian Standards, New Delhi, India.
- IS 4031 Part-V (1988), Methods of Physical Tests for Hydraulic Cement-Determination of Initial and Final Setting Times, Bureau of Indian Standards, New Delhi, India.
- IS 4031 Part-VI (1988), Methods of Physical Tests for Hydraulic Cement-Determination of Compressive Strength of Hydraulic Cement Other than Masonry Cement, Bureau of Indian Standards, New Delhi, India.
- IS 456 (2000), Plain and Reinforced Concrete- Code of Practice, Bureau of Indian Standards, New Delhi, India.
- IS 516 (2004), Methods of tests for strength of concrete, Bureau of Indian Standard, New Delhi, India.
- IS 516 Part-V (2018), Hardened Concrete - Methods of Tests, Non-Destructive Testing of Concrete - Ultrasonic Pulse Velocity Testing, Bureau of Indian Standards, New Delhi, India.
- IS 8112 (2013), Indian Standard 43 Grade Ordinary Portland Cement-Specification, Bureau of Indian Standards, New Delhi, India.
- IS 9103 (1999), Concrete Admixtures-Specifications, Bureau of Indian Standards, New Delhi, India
- Kar, A., Halabe, U.B., Ray, I. and Unnikrishnan, A. (2013), "Non-destructive characterizations of alkali activated fly ash and/or slag concrete", Eur. Sci. J., 9(24).
- Kayali, O. and Ahmed, M.S. (2013), "Assessment of high-volume replacement fly ash concrete-Concept of performance index", Constr. Build. Mater., 39, 71-76. https://doi.org/10.1016/j.conbuildmat.2012.05.009.
- Kwan, A.K., Dong, C.X. and Ho, J.C. (2015), "Axial and lateral stress-strain model for FRP confined concrete", Eng. Struct., 99, 285-295. https://doi.org/10.1016/j.engstruct.2015.04.046.
- Kwan, A.K., Dong, C.X. and Ho, J.C. (2016), "Axial and lateral stress-strain model for circular concrete-filled steel tubes with external steel confinement", Eng. Struct., 117, 528-541. https://doi.org/10.1016/j.engstruct.2016.03.026.
- Lai, M., Hanzic, L. and Ho, J.C. (2019), "Fillers to improve passing ability of concrete", Struct. Concrete, 20(1), 185-197. https://doi.org/10.1002/suco.201800047.
- Lai, M.H., Binhowimal, S.A., Griffith, A.M., Hanzic, L., Chen, Z., Wang, Q. and Ho, J.C., (2022), "Shrinkage, cementitious paste volume, and wet packing density of concrete", Struct. Concrete, 23(1), 488-504. https://doi.org/10.1002/suco.202000407.
- Lai, M.H., Binhowimal, S.A., Griffith, A.M., Hanzic, L., Wang, Q., Chen, Z. and Ho, J.C. (2021), "Shrinkage design model of concrete incorporating wet packing density", Constr. Build. Mater., 280, 122448. https://doi.org/10.1016/j.conbuildmat.2021.122448.
- Lingam, A. and Karthikeyan, J. (2014), "Prediction of compressive strength for HPC mixes containing different blends using ANN", Comput. Concrete, 13(5), 621-632. https://doi.org/10.12989/cac.2014.13.5.621.
- Malhotra, V.M. (2010), "Global warming, and role of supplementary cementing materials and superplasticisers in reducing greenhouse gas emissions from the manufacturing of Portland cement", Int. J. Struct. Eng., 1(2), 116-130. https://doi.org/10.1504/IJStructE.2010.03148.
- Mehta, P.K. and Monteiro, P. (2014), Concrete: Microstructure, Properties, and Materials, McGraw-Hill Education, New York, NY, USA.
- Ni, H.G. and Wang, J.Z. (2000), "Prediction of compressive strength of concrete by neural networks", Cement Concrete Res., 30(8), 1245-1250. https://doi.org/10.1016/S0008-8846(00)00345-8.
- Pal, S., Shariq, M., Abbas, H., Pandit, A.K. and Masood, A. (2020), "Strength characteristics and microstructure of hooked-end steel fiber reinforced concrete containing fly ash, bottom ash and their combination", Constr. Build. Mater., 247, 118530. https://doi.org/10.1016/j.conbuildmat.2020.118530.
- Papadakis, V.G. and Demis, S. (2013), "Predictive modeling of concrete compressive strength based on cement strength class", Comput. Concrete, 11(6), 587-602. http://dx.doi.org/10.12989/cac.2013.11.6.587.
- Rao, S.K., Sravana, P. and Rao, T.C. (2016), "Experimental studies in ultrasonic pulse velocity of roller compacted concrete pavement containing fly ash and M-sand", Int. J. Pavement Res. Technol., 9(4), 289-301. https://doi.org/10.1016/j.ijprt.2016.08.003.
- Sata, V., Khammathit, P. and Chindaprasirt, P. (2011), "Efficiency factor of high calcium Class F fly ash in concrete", Comput. Concrete, 8(5), 583-595. https://doi.org/10.12989/cac.2011.8.5.583.
- Shariq, M., Prasad, J. and Abbas, H. (2013a), "Effect of GGBFS on age dependent static modulus of elasticity of concrete", Constr. Build. Mater., 41, 411-418. https://doi.org/10.1016/j.conbuildmat.2012.12.035.
- Shariq, M., Prasad, J. and Masood, A. (2013b), "Studies in ultrasonic pulse velocity of concrete containing GGBFS", Constr. Build. Mater., 40, 944-950. https://doi.org/10.1016/j.conbuildmat.2012.11.070.
- Siddique, R. (2004), "Performance characteristics of high-volume Class F fly ash concrete", Cement Concrete Res., 34(3), 487-493. https://doi.org/10.1016/j.cemconres.2003.09.002.
- Sivasundaram, V., Carette, G.G. and Malhotra, V.M. (1990), "Long-term strength development of high-volume fly ash concrete", Cement Concrete Compos., 12(4), 263-270. https://doi.org/10.1016/0958-9465(90)90005-I.
- Wei, X., Zhu, H., Li, G., Zhang, C. and Xiao, L. (2007), "Properties of high volume fly ash concrete compensated by metakaolin or silica fume", J. Wuhan Univ. Technol. Mater. Sci. Ed., 22(4), 728-732. https://doi.org/10.1007/s11595-006-4728-0.
- Wong, H.H. and Kwan, A.K. (2008), "Packing density of cementitious materials: Part 1-Measurement using a wet packing method", Mater. Struct., 41, 689-701. https://doi.org/10.1617/s11527-007-9274-5.
- Yildirim, H. and Sengul, O. (2011), "Modulus of elasticity of substandard and normal concretes", Constr. Build. Mater., 25(4), 1645-1652. https://doi.org/10.1016/j.conbuildmat.2010.10.009.
- Yoo, S.W., Choi, Y.C. and Choi, W. (2017), "Compression behavior of confined columns with high-volume fly ash concrete", Adv. Mater. Sci. Eng., 2017(1), 8208079. https://doi.org/10.1155/2017/8208079.
- Yoon, S., Monteiro, P.J., Macphee, D.E., Glasser, F.P. and Imbabi, M.S.E. (2014), "Statistical evaluation of the mechanical properties of high-volume class F fly ash concretes", Constr. Build. Mater., 54, 432-442. https://doi.org/10.1016/j.conbuildmat.2013.12.077.
- Yoshitake, I., Wong, H., Ishida, T. and Nassif, A.Y. (2014), "Thermal stress of high-volume fly-ash (HVFA) concrete made with limestone aggregate", Constr. Build. Mater., 71, 216-225. https://doi.org/10.1016/j.conbuildmat.2014.08.028.
- Zezulova, E. (2017), "The dynamic modulus of elasticity as an important parameter for military use of constructions", Durability of Critical Infrastructure, Monitoring and Testing: Proceedings of the ICDCF 2016, Satov, Czech Republic, December.