References
- Barluenga, G., & Hernandez-Olivares, F. (2004). SBR latex modified mortar rheology and mechanical behavior. Cement and Concrete Research, 34, 527-535. https://doi.org/10.1016/j.cemconres.2003.09.006
- Beeldens, A., Van Gemert, D., Schorn, H., Ohama, Y., & Czarnecki, L. (2005). From microstructure to macrostructure: An integrated model of structure formation in polymer-modified concrete. Materials and Structures, 38, 601-607. https://doi.org/10.1007/BF02481591
- Bhanja, S., & Sengupta, B. (2002). Investigations on the compressive strength of silica fume concrete using statistical methods. Cement and Concrete Research, 32, 1391-1394. https://doi.org/10.1016/S0008-8846(02)00787-1
- Bhanja, S., & Sengupta, B. (2005). Influence of silica fume on the tensile strength of concrete. Cement and Concrete Research, 35(2005), 743-747. https://doi.org/10.1016/j.cemconres.2004.05.024
- Bhanjaa, S., & Sengupta, B. (2003). Modified water-cement ratio law for silica fume concretes. Cement and Concrete Research, 33, 447-450. https://doi.org/10.1016/S0008-8846(02)00977-8
- Bhikshma, V., Nitturkar, K., & Venkatesham, Y. (2009). Investigations on mechanical properties of high strength silica fume concrete. Asian Journal of Civil Engineering Building and Housing, 10(3), 335-346.
- Biswal, K. C., & Sadang, S. C. (2010). Effect of superplasticizer and silica fume on properties of concrete. In Proceedings of International Conference on Advances in Civil Engineering.
- Chen, B., & Liu, J. (2007). Mechanical properties of polymermodified concretes containing expanded polystyrene beads. Construction and Building Materials, 21, 7-11. https://doi.org/10.1016/j.conbuildmat.2005.08.001
- Hwang, E. H., & Ko, Y. S. (2008). Comparison of mechanical and physical properties of SBR-polymer modified mortars using recycled waste materials. Journal of Industrial and Engineering Chemistry, 14, 644-650. https://doi.org/10.1016/j.jiec.2008.02.009
- Hwang, E. H., Ko, Y. S., & Jeon, J. K. (2008). Effect of polymer cement modifiers on mechanical and physical properties of polymer-modified mortar using recycled artificial marble waste fine aggregate. Journal of Industrial and Engineering Chemistry, 14, 265-271. https://doi.org/10.1016/j.jiec.2007.11.002
- Iqbal khan, M. (2009). Analytical model for strength prediction of HPC consisting of cementations. Architecture Civil Engineering Environmental, 1, 89-96.
- Jun, L., Chang-Wei, X., Xiao-Van, Z., & Ling, W. (2003). Modification of high performances of polymer cement concrete. Journal of Wuban University of Technology- Mater, 18(1), 61-64.
- Katkhuda, H., Hanayneh, B., & Shatarat, N. (2009). Influence of silica fume on high strength of light weight concrete. World Academy of Science, Engineering and Technology, 58, 781-788.
- Popovics, S. (1998). Strength and related properties of concrete a quantitative approach. New York, NY: Wiley.
- Rossignol, J. A. (2009). Interfacial interactions in concretes with silica fume and SBR latex. Construction and Building Materials, 23(2009), 817-821. https://doi.org/10.1016/j.conbuildmat.2008.03.005
- Rozenbaum, O., Pellenq, R. J. M., & Van Damme, H. (2005). An experimental and mesocopic lattice simulation study of styrene-butadiene latex-cement composites properties. Materials and Structures, 38, 467-478. https://doi.org/10.1617/14356
- Wang, R., Wang, P. M., & Li, X. G. (2005). Physical and mechanical properties of styrene-butadiene rubber emulsion modified cement mortars. Cement and Concrete Research, 35, 900-906. https://doi.org/10.1016/j.cemconres.2004.07.012
- Wu, K. R., Zhang, D., & Song, J. M. (2002). Properties of polymer-modified cement mortar using pre-enveloping method. Cement and Concrete Research, 32, 425-429. https://doi.org/10.1016/S0008-8846(01)00697-4
- Zelic, J., Rusic, D., & Krstulovic, R. (2004). A mathematical model for prediction of compressive strength in cement-silica fume blends. Cement and Concrete Research, 34, 2319-2328. https://doi.org/10.1016/j.cemconres.2004.04.015
Cited by
- Effects of Silica Fume Content and Polymer-Binder Ratio on Properties of Ultrarapid-Hardening Polymer-Modified Mortars vol.10, pp.2, 2013, https://doi.org/10.1007/s40069-016-0136-9
- Prediction performance of compressive strength of cementitious materials containing rubber aggregates and filler using fuzzy logic method vol.13, pp.2, 2013, https://doi.org/10.1108/mmms-12-2016-0066
- Influence of polymer latex on the setting time, mechanical properties and durability of calcium sulfoaluminate cement mortar vol.169, pp.None, 2018, https://doi.org/10.1016/j.conbuildmat.2018.03.005
- Prediction Model of Compressive Strength Development in Concrete Containing Four Kinds of Gelled Materials with the Artificial Intelligence Method vol.9, pp.6, 2013, https://doi.org/10.3390/app9061039
- Influence of Polymer Types on the Mechanical Properties of Polymer-Modified Cement Mortars vol.10, pp.3, 2013, https://doi.org/10.3390/app10031061
- Effect of cementing efficiency factor on the mechanical properties of concrete incorporating silica fume vol.5, pp.3, 2013, https://doi.org/10.1080/24705314.2020.1765269
- An experimental study on the fatigue properties of Alccofine-based crumb rubber concrete vol.174, pp.5, 2013, https://doi.org/10.1680/jensu.20.00080
- Improvement in compressive strength of Styrene-Butadiene-Rubber (SBR) modified mortars by using powder form and nanoparticles vol.44, pp.None, 2021, https://doi.org/10.1016/j.jobe.2021.102651