• 제목/요약/키워드: Precursor Solution

Search Result 573, Processing Time 0.029 seconds

In-situ Cross-linked Gel Polymer Electrolyte Using Perfluorinated Acrylate as Cross-linker (과불소화된 아크릴레이트 가교제로 제조된 직접 가교형 겔 고분자 전해질의 전기화학적 특성)

  • Oh, Si-Jin;Shim, Hyo-Jin;Kim, Dong-Wook;Lee, Myong-Hoon;Lee, Chang-Jin;Kang, Yong-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • The gel polymer electrolyte(GPE) were prepared by in-situ thermal cross-linking reaction of homogeneous precursor solution of perfluorinated phosphate-based cross-linker and liquid electrolyte. Ionic conductivities and electrochemical properties of the prepared gel polymer electrolyte with the various contents of liquid electrolytes and perfluorinated organophosphate-based cross-linker were examined. The stable gel polymer electrolyte was obtained up to 97 wt% of the liquid electrolyte. Ionic conductivity and electrochemical properties of the gel polymer electrolytes with the various chain length of perfluorinated ethylene oxide and different content of liquid electrolytes were examined. The maximum ionic conductivity of liquid electrolyte was measured to be $1.02\;{\times}\;10^{-2}\;S/cm$ at $30^{\circ}C$ using the cross-linker($PFT_nGA$). The electrochemical stability of the gel polymer electrolyte was extended to 4.5 V. The electrochemical performances of test cells composed of the resulting gel polymer electrolyte were also studied to evaluate the applicability on the lithium polymer batteries. The test cell carried a discharge capacity of 136.11mAh/g at 0.1C. The discharge capacity was measured to be 91% at 2C rate. The discharge capacity decreased with increase of discharge rate which was due to the polarization. After 500th charge/discharge cycles, the capacity of battery decreased to be 70% of the initial capacity.

Development of Chitosan Coated Solid Lipid Nano-particles Containing 7-Dehydrocholesterol (7-디하이드로콜레스테롤을 함유한 키토산 코팅 처리 Solid Lipid Nano-particle의 개발에 관한 연구)

  • Lee Geun-Soo;Kim Tae-Hoon;Lee Chun-Il;Pyo Hyeong-Bae;Choe Tae-Boo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.2 s.51
    • /
    • pp.141-146
    • /
    • 2005
  • Unstable cosmetic active ingredients could rapidly break down in chemical and photochemical process. Therefore, it has become a very important issue to encapsulate active ingredient for the stabilization. 7-Dehydrocholesterol (7-DHC), a precursor of vitamin $D_3$, has been shown to increase levels of protein and mRNA for heat shock protein in normal human epidermal keratinocytes. However, topical dermal application of 7-DHC is restricted due to its poor solubility and chemical unstability. In this study, 7-DHC was incorporated into nano-emulsion (NE), solid lipid nano-particle (SLN), and chitosan coated solid lipid nano-particle (CASLN), respectively. In order to prepare NE and SLN dispersion, high-pressure homogenization at temperature above the melting point of lipid was used Hydrogenated lecithin and polysorbate 60 were used as stabilizer for NE and SLN. CASLN was prepared by high speed homogenizing after adding chitosan solution to the SLN dispersion and showed positively charged particle properties. Decomposition rate of 7-DHC in NE, SLN and CASLN was studied as a function of time at different temperature. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies were performed to characterize state of lipid modification. It appeared that CASLN is the most effective to stabilize 7-DHC and may be used for a useful topical dermal delivery system.

Preparation of Nanocrystalline ZrO2 Film by Using a Zirconium Naphthenate and Evaluation of Calcium Phosphate Forming Ability (지르코늄 나프테네이트를 이용한 나노결정질 ZrO2 박막의 제조와 칼슘 포스페이트 형성 능력의 평가)

  • Oh, Jeong-Sun;Ahn, Jun-Hyung;Yun, Yeon-Hum;Kang, Bo-An;Kim, Sang-Bok;Hwang, Kyu-Seog;Shim, Yeon-A
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.884-889
    • /
    • 2002
  • In order to investigate the calcium phosphate forming ability of nanocrystalline $ZrO_2$ film, we prepared $ZrO_2/Si$ structure by using a chemical solution deposition with a zirconium naphthenate as a starting material. Precursor sol was spin-coated onto the (100)Si substrate and prefired at 500$^{\circ}C$ for 10 min in air, followed by final annealing at 800$^{\circ}C$ for 30 min in air. Crystallinity of the annealed film was examined by X-ray diffraction analysis. Surface morphology and surface roughness of the film were characterized by field emission-scanning electron microscope and atomic force microscope. After annealing, nanocrystalline $ZrO_2$ grains were obtained on the surface of the film with a homogeneous interface between the film and substrate. After immersion for 1 or 5 days in a simulated body fluid, formation of calcium phosphate was observed on $ZrO_2$ film annealed at 800$^{\circ}C$ by energy dispersive X-ray spectrometer. The fourier transform infrared spectroscopy revealed that carbonate was substituted into the calcium phosphate.

Synthesis parameters of hydroxyapatite preparation by a precipitation process (합성조건이 침전법에 의한 Hydroxyapatite 제조에 미치는 영향)

  • Moon, Sung Wook;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.3
    • /
    • pp.96-102
    • /
    • 2022
  • Hydroxyapatite (HAp) was synthesized from calcium hydroxide (Ca(OH)2) reacting with phosphoric acid (H3PO4) in aqueous solution. HAp powders were synthesized from extremely high concentration of precursor solutions over 3 M of Ca(OH)2 aqueous suspension using modified process parameters such as phosphoric acid (H3PO4) pouring rate, aging time and post ball milling process. Regardless of phosphoric acid pouring rate, the DCPD (dicalcium phosphate dihydrate) was formed at room temperature and when heated above 700℃, β-TCP (tricalcium phosphate) was synthesized and the amount reached its maximum at 900℃. When the synthesized powder was sintered at 1150℃, β-TCP, a high temperature impurity phase, remained. The single HAp phase without DCPD was obtained from post ball-milled precipitates followed by 3 day aging. For the ball-milled precipitates even without the aging process, the desired single HAp phase without β-TCP could be obtained by heat treatment above 500℃. The post ball milling process provided a convenient route for HAp synthesis.

Structural and Electrical Properties of La0.7Sr0.3MnO3 Thin Films for Thermistor Applications (서미스터로의 응용을 위한 La0.7Sr0.3MnO3 박막의 구조적, 전기적 특성)

  • Lim, Jeong-Eun;Park, Byeong-Jun;Yi, Sam-Haeng;Lee, Myung-Gyu;Park, Joo-Seok;Kim, Byung-Cheul;Kim, Young-Gon;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.499-503
    • /
    • 2022
  • La0.7Sr0.3MnO3 precursor solution were prepared by a sol-gel method. La0.7Sr0.3MnO3 thin films were fabricated by a spin-coating method on a Pt/Ti/SiO2/Si substrate. Structural and electrical properties with the variation of sintering temperature were measured. All specimens exhibited a polycrystalline orthorhombic crystal structure, and the average thickness of the specimens coated 6 times decreased from about 427 nm to 383 nm as the sintering temperature increased from 740℃ to 830℃. Electrical resistance decreased as the sintering temperature increased. In the La0.7Sr0.3MnO3 thin films sintered at 830℃, electrical resistivity, TCR, B-value, and activation energy were 0.0374 mΩ·cm, 0.316%/℃, 296 K and 0.023 eV, respectively.

A Review on the Wet Chemical Synthesis of Sulfide Solid Electrolytes for All-Solid-State Li Batteries (전고체전지용 황화물 고체전해질 습식 합성기술 동향)

  • Ha, Yoon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.95-104
    • /
    • 2022
  • The development of non-flammable all-solid-state batteries (ASSLBs) has become a hot topic due to the known drawbacks of commercial lithium-ion batteries. As the possibility of applying sulfide solid electrolytes (SSEs) for electric vehicle batteries increases, efforts for the low-cost mass-production are actively underway. Until now, most studies have used high-energy mechanical milling, which is easy to control composition and impurities and can reduce the process time. Through this, various SSEs that exceed the Li+ conductivity of liquid electrolytes have been reported, and expectations for the realization of ASSLBs are growing. However, the high-energy mechanical milling method has disadvantages in obtaining the same physical properties when mass-produced, and in controlling the particle size or shape, so that physical properties deteriorate during the full process. On the other hand, wet chemical synthesis technology, which has advantages in mass production and low price, is still in the initial exploration stage. In this technology, SSEs are mainly manufactured through producing a particle-type, solution-type, or mixed-type precursor, but a clear understanding of the reaction mechanism hasn't been made yet. In this review, wet chemical synthesis technologies for SSEs are summarized regarding the reaction mechanism between the raw materials in the solvent.

A Review on the Bonding Characteristics of SiCN for Low-temperature Cu Hybrid Bonding (저온 Cu 하이브리드 본딩을 위한 SiCN의 본딩 특성 리뷰)

  • Yeonju Kim;Sang Woo Park;Min Seong Jung;Ji Hun Kim;Jong Kyung Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.8-16
    • /
    • 2023
  • The importance of next-generation packaging technologies is being emphasized as a solution as the miniaturization of devices reaches its limits. To address the bottleneck issue, there is an increasing need for 2.5D and 3D interconnect pitches. This aims to minimize signal delays while meeting requirements such as small size, low power consumption, and a high number of I/Os. Hybrid bonding technology is gaining attention as an alternative to conventional solder bumps due to their limitations such as miniaturization constraints and reliability issues in high-temperature processes. Recently, there has been active research conducted on SiCN to address and enhance the limitations of the Cu/SiO2 structure. This paper introduces the advantages of Cu/SiCN over the Cu/SiO2 structure, taking into account various deposition conditions including precursor, deposition temperature, and substrate temperature. Additionally, it provides insights into the core mechanisms of SiCN, such as the role of Dangling bonds and OH groups, and the effects of plasma surface treatment, which explain the differences from SiO2. Through this discussion, we aim to ultimately present the achievable advantages of applying the Cu/SiCN hybrid bonding structure.

Structural and Electrical Properties of (La0.7Sr0.3)(Mn1-xFex)O3 Thin Films Prepared by Sol-Gel Method for Thermistor Devices (서미스터 소자로의 응용을 위한 솔-젤법으로 제작한 (La0.7Sr0.3)(Mn1-xFex)O3 박막의 구조적, 전기적 특성)

  • Ji-Su Yuk;Sam-Haeng Yi;Myung-Gyu Lee; Joo-Seok Park;Young-Gon Kim;Sung-Gap Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.164-168
    • /
    • 2024
  • (La0.7Sr0.3)(Mn1-xFex)O3 (LSMFO) (x = 0.03, 0.06, 0.09, 0.12) precursor solution are prepared by sol-gel method. LSMFO thin films are fabricated by the spin-coating method on Pt/Ti/SiO2/Si substrate, and the sintering temperature and time are 800℃ and 1 hr, respectively. The average thickness of the 6-times coated LSMFO films is about 181 to 190 nm and average grain size is about 18 to 20 nm. As the amount of Fe added in the LSMFO thin film increased, the resistivity decreased, and the TCR and B25/65-value increased. Electrical resistivity, TCR and B25/65-value of the (La0.7Sr0.3)(Mn0.88Fe0.12)O3 thin film are 0.0136 mΩ-cm, 0.358%/℃, and 328 K at room temperature, respectively. The resistivity properties of LSMFO thin films matched well with Mott's VRH model.

Fabrication of Silica Nanoparticles by Recycling EMC Waste from Semiconductor Molding Process and Its Application to CMP Slurry (반도체 몰딩 공정에서 발생하는 EMC 폐기물의 재활용을 통한 실리카 나노입자의 제조 및 반도체용 CMP 슬러리로의 응용)

  • Ha-Yeong Kim;Yeon-Ryong Chu;Gyu-Sik Park;Jisu Lim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In this study, EMC(Epoxy molding compound) waste from the semiconductor molding process is recycled and synthesized into silica nanoparticles, which are then applied as abrasive materials contains CMP(Chemical mechanical polishing) slurry. Specifically, silanol precursor is extracted from EMC waste according to the ultra-sonication method, which provides heat and energy, using ammonia solution as an etchant. By employing as-extracted silanol via a facile sol-gel process, uniform silica nanoparticles(e-SiO2, experimentally synthesized SiO2) with a size of ca. 100nm are successfully synthesized. Through physical and chemical analysis, it was confirmed that e-SiO2 has similar properties compared to commercially available SiO2(c-SiO2, commercially SiO2). For practical CMP applications, CMP slurry is prepared using e-SiO2 as an abrasive and tested by polishing a semiconductor chip. As a result, the scratches that are roughly on the surface of the chip are successfully removed and turned into a smooth surface. Hence, the results present a recycling method of EMC waste into silica nanoparticles and the application to high-quality CMP slurry for the polishing process in semiconductor packaging.

Automated Synthesis of [$^{18}F$]Fallypride for Routine Clinical Use (자동합성장치를 이용한 [$^{18}F$]Fallypride의 합성)

  • Park, Jun-Hyung;Moon, Byung-Seok;Lee, Hong-Jin;Lee, Hyo-Jun;Lee, In-Won;Lee, Byung-Chul;Kim, Sang-Eun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.104-109
    • /
    • 2010
  • Purpose: $[^{18}F]$Fallypride plays an effective radiotracer for the study of dopamine $D_2/D_3$ receptor occupancy, neuropsychiatric disorders and aging in humans. This tracer has the potential for clinical use, but automated labeling efficiency showed low radiochemical yields about 5~20% with relatively long labelling time of fluorine-18. In present study, we describe an improved automatic synthesis of [$^{18}F$]Fallypride using different base concentration for routine clinical use. Materials and Methods: Fully automated synthetic process of [$^{18}F$]Fallypride was perform using the TracerLab $FX_{FN}$ synthesizer under various labeling conditions and tosyl-fallypride was used as a precursor. [$^{18}F$]Fluoride was extracted with various concentration of $K_{2.2.2.}/K_2CO_3$ from $^{18}O$-enriched water trapped on the ion exchange cartridge. After azeotropic drying, the labeling reaction proceeded in $CH_3CN$ at $100^{\circ}C$ for 10 or 30 min. The reaction mixture was purified by reverse phase HPLC and collected organic solution was exchanged by tc-18 Sep-Pak for the clinically available solution. Results: The optimal labeling condition of [$^{18}F$]Fallypride in the automatic production was that 2 mg of tosyl-fallypride in acetonitrile (1 mL) was incubated at $100^{\circ}C$ for 10 min with $K_{2.2.2.}/K_2CO_3$ (11/0.8 mg). [$^{18}F$]Fallypride was obtained with high radiochemical yield about $66{\pm}1.4%$ (decay-corrected, n=28) within $51{\pm}1.2$ min including HPLC purification and solid-phase purification for the final formulation. Conclusion: [$^{18}F$]Fallypride was prepared with a significantly improved radiochemical yield with high specific activity and shorten synthetic time. In addition, this automated procedure provides the high reproducibility with no synthesis failures (n=28).

  • PDF