Acknowledgement
본 연구는 한국전기연구원 기본사업(22A01011), 산업통상자원부 및 산업기술평가관리원(KEIT)의 소재부품기술개발사업(20009957), 중소벤처기업부 및 중소기업기술정보진흥원 Tech-Bridge활용 상용화기술개발 사업(S3177631)으로부터 지원받아 수행되었음을 밝히며 이에 감사드립니다.
References
- M. S. Ziegler and J. E. Trancik, Re-examining rates of lithium-ion battery technology improvement and cost decline, Energy Environ. Sci., 14(4), 1635-1651 (2021). https://doi.org/10.1039/D0EE02681F
- K. Liu, Y. Liu, D. Lin, A. Pei, and Y. Cui, Materials for lithium-ion battery safety, Sci. Adv., 4(6), eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
- A. Manthiram, X. Yu, and S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater., 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
- N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, A lithium superionic conductor, Nat. Mater., 10, 682-686 (2011). https://doi.org/10.1038/nmat3066
- Y. Seino, T. Ota, K. Takada, A. Hayashi, and M. Tatsumisago, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy Environ. Sci., 7(2), 627-631 (2014). https://doi.org/10.1039/C3EE41655K
- Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, and R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 1, 16030 (2016). https://doi.org/10.1038/nenergy.2016.30
- H.-J. Deiseroth, S.-T. Kong, M. Schlosser, and C. Reiner, Lithium argyrodite, WO Patent WO/2009/047254 (2009).
- K. Terai, F. Utsuno, T. Umeki, M. Nakagawa, and H. Yamaguchi, Sulfide solid electrolyte, WO Patent WO/2018/047565 (2018).
- T. Tsukasa, C. Takashi, and I. Takahiro, Sulfide-based solid electrolyte particles, WO Patent WO/2019/176895 (2019).
- C. Yu, Y. Li, M. Willans, Y. Zhao, K. R. Adair, F. Zhao, W. Li, S. Deng, J. Liang, M. N. Banis, R. Li, H. Huang, L. Zhang, R. Yang, S. Lu, Y. Huang, and X. Sun, Superionic conductivity in lithium argyrodite solid-state electrolyte by controlled Cl-doping, Nano Energy, 69, 104396 (2020). https://doi.org/10.1016/j.nanoen.2019.104396
- P. Adeli, J. D. Bazak, K. H. Park, I. Kochetkov, A. Huq, G. R. Goward, and L. F. Nazar, Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution, Angew. Chem. Int. Ed., 58(26), 8681-8686 (2019). https://doi.org/10.1002/anie.201814222
- W. D. Jung, J.-S. Kim, S. Choi, S. Kim, M. Jeon, H.-G. Jung, K. Y. Chung, J.-H. Lee, B.-K. Kim, J.-H. Lee, and H. Kim, Superionic halogen-rich Li-argyrodites using in situ nanocrystal nucleation and rapid crystal growth, Nano Lett., 20(4), 2303-2309 (2020). https://doi.org/10.1021/acs.nanolett.9b04597
- X. Feng, P.-H. Chien, Y. Wang, S. Patel, P. Wang, H. Liu, M. Immediato-Scuotto, and Y.-Y. Hu, Enhanced ion conduction by enforcing structural disorder in Li-deficient argyrodites Li6-xPS5-xCl1+x, Energy Storage Mater., 30, 67-73 (2020). https://doi.org/10.1016/j.ensm.2020.04.042
- K. Oh, D. Chang, B. Lee, D.-H. Kim, G. Yoon, I. Park, B. Kim, and K. Kang, Native defects in Li10GeP2S12 and their effect on lithium diffusion, Chem. Mater., 30(15), 4995-5004 (2018). https://doi.org/10.1021/acs.chemmater.8b01163
- M. A. Kraft, S. Ohno, T. Zinkevich, R. Koerver, S. P. Culver, T. Fuchs, A. Senyshyn, S. Indris, B. J. Morgan, and W. G. Zeier, Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGexS5I for all-solid-state batteries, J. Am. Chem. Soc., 140(47), 16330-16339 (2018). https://doi.org/10.1021/jacs.8b10282
- L. Zhou, A. Assoud, Q. Zhang, X. Wu, and L. F. Nazar, New family of argyrodite thioantimonate lithium superionic conductors, J. Am. Chem. Soc., 141(48), 19002-19013 (2019). https://doi.org/10.1021/jacs.9b08357
- Y. Lee, J. Jeong, D.-H. Lim, S.-O. Kim, H.-G. Jung, K. Y. Chung, and S. Yu, Superionic Si-substituted lithium argyrodite sulfide electrolyte Li6+xSb1-xSixS5I for all-solid-state batteries, ACS Sustain. Chem. Eng., 9(1), 120-128 (2021). https://doi.org/10.1021/acssuschemeng.0c05549
- Y. Lee, J. Jeong, H. J. Lee, M. Kim, D. Han, H. Kim, J. M. Yuk, K.-W. Nan, K. Y. Chung, H.-G. Jung, and S. Yu, Lithium argyrodite sulfide electrolytes with high ionic conductivity and air stability for all-solid-state Li-Ion batteries, ACS Energy Lett., 7(1), 171-179 (2022). https://doi.org/10.1021/acsenergylett.1c02428
- A. Banik, T. Famprikis, M. Chidiu, S. Ohno, M. A. Kraft, and W. G. Zeier, On the underestimated influence of synthetic conditions in solid ionic conductors, Chem. Sci., 12, 6238-6263 (2021). https://doi.org/10.1039/D0SC06553F
- Y.-C. Ha, S.-M. Lee, B. G. Kim, G. Park, J.-W. Park, J. Park, J.-H. Yu, W.-J. Lee, Y.-J. Lee, and H. Choi, Method for producing solid electrolyte, solid electrolyte prepared therefrom, and all-solid battery comprising the same, WO Patent PCT/KR2022/000464 (2022).
- A. Miura, N. C. Rosero-Navarro, A. Sakuda, K. Tadanaga, N. H. H. Phuc, A. Matsuda, N. Machida, A. Hayashi, and M. Tatsumisago, Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery, Nat. Rev. Chem., 3, 189-198 (2019). https://doi.org/10.1038/s41570-019-0078-2
- M. Ghidiu, J. Ruhl, S. P. Culver, and W. G. Zeier, Solution-based synthesis of lithium thiophosphate superionic conductors for solid-state batteries: a chemistry perspective, J. Mater. Chem. A, 7, 17735-17753 (2019). https://doi.org/10.1039/C9TA04772G
- Z. Liu, W. Fu, E. A. Payzant, X. Yu, Z. Wu, N. J. Dudney, J. Kiggans, K. Hong, A. J. Rondinone, and C. Liang, Anomalous high ionic conductivity of nanoporous β-Li3PS4, J. Am. Chem. Soc., 135(3), 975-978 (2013). https://doi.org/10.1021/ja3110895
- K. Homma, M. Yonemura, T. Kobayashi, M. Nagao, M. Hirayama, and R. Kanno, Crystal structure and phase transitions of the lithium ionic conductor Li3PS4, Solid State Ion., 182(1), 53-58 (2011). https://doi.org/10.1016/j.ssi.2010.10.001
- M. Calpa, H. Nakajima, S. Mori, Y. Goto, Y. Mizuguchi, C. Moriyoshi, Y. Kuroiwa, N. C. Rosero-Navarro, A. Miura, and K. Tadanaga, Formation mechanism of β-Li3PS4 through decomposition of complexes, Inorg. Chem., 60(10), 6964-6970 (2021). https://doi.org/10.1021/acs.inorgchem.1c00294
- F. Marchini, B. Porcheron, G. Rousse, L. A. Blanquer, L. Droguet, D. Foix, T. Koc, M. Deschamps, and J. M. Tarascon, The hidden side of nanoporous β-Li3PS4 solid electrolyte, Adv. Energy Mater., 11(34), 2101111 (2021). https://doi.org/10.1002/aenm.202101111
- E. Rangasamy, Z. Liu, M. Gobet, K. Pilar, G. Sahu, W. Zhou, H. Wu, S. Greenbaum, and C. Liang, An iodide-based Li7P2S8I superionic conductor, J. Am. Chem. Soc., 137(4), 1384-1387 (2015). https://doi.org/10.1021/ja508723m
- S. J. Sedlmaier, S. Indris, C. Dietrich, M. Yavuz, C. Drager, F. von Seggern, H. Sommer, and J. Janek, Li4PS4I: A Li+ superionic conductor synthesized by a solvent-based soft chemistry approach, Chem. Mater., 29(4), 1830-1835 (2017). https://doi.org/10.1021/acs.chemmater.7b00013
- S.-J. Choi, S.-H. Lee, Y.-C. Ha, J.-H. Yu, C.-H. Doh, Y. Lee, J.-W. Park, S.-M. Lee, and H.-C. Shin, Synthesis and electrochemical characterization of a glass-ceramic Li7P2S8I solid electrolyte for all-solid-state Li-ion batteries, J. Electrochem. Soc., 165, A957-A962 (2018). https://doi.org/10.1149/2.0981805jes
- S.-J. Choi, S.-H. Choi, A. D. Bui, Y.-J. Lee, S.-M. Lee, H.-C. Shin, and Y.-C. Ha, LiI-doped sulfide solid electrolyte: enabling a high-capacity slurry-cast electrode by low-temperature post-sintering for practical all-solid-state lithium batteries, ACS Appl. Mater. Interfaces, 10(37), 31404-31412 (2018). https://doi.org/10.1021/acsami.8b11244
- A. D. Bui, S.-H. Choi, H. Choi, Y.-J. Lee, C.-H. Doh, J.-W. Park, B. G. Kim, W.-J. Lee, S.-M. Lee, and Y.-C. Ha, Origin of the outstanding performance of dual halide doped Li7P2S8X (X = I, Br) solid electrolytes for all-solid-state lithium batteries, ACS Appl. Energy Mater., 4(1), 1-8 (2021).
- S. Yubuchi, A. Hayashi, and M. Tatsumisago, Application to all-solid-state batteries with Li6PS5Br electrolyte prepared by a liquid-phase technique, Meet. Abstr., MA2016-02, 3982 (2016). https://doi.org/10.1149/MA2016-02/53/3982
- S. Yubuchi, M. Uematsu, C. Hotehama, A. Sakuda, A. Hayashi, and M. Tatsumisago, An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol, J. Mater. Chem. A, 7, 558-566 (2019). https://doi.org/10.1039/C8TA09477B
- L. Zhou, K.-H. Park, X. Sun, F. Lalere, T. Adermann, P. Hartmann, and L. F. Nazar, Solvent-engineered design of argyrodite Li6PS5X (X = Cl, Br, I) solid electrolytes with high ionic conductivity, ACS Energy Lett., 4(1), 265-270 (2019). https://doi.org/10.1021/acsenergylett.8b01997
- M.-J. Kim, I.-H. Choi, S. C. Jo, B. G. Kim, Y.-C. Ha, S.-M. Lee, S. Kang, K.-J. Baeg, and J.-W. Park, A novel strategy to overcome the hurdle for commercial all-solid-state batteries via low-cost synthesis of sulfide solid electrolytes, Small Methods, 5(11), 2100793 (2021). https://doi.org/10.1002/smtd.202100793
- M. Calpa, N. C. Rosero-Navarro, A. Miura, and K. Tadanaga, Instantaneous preparation of high lithium-ion conducting sulfide solid electrolyte Li7P3S11 by a liquid phase process, RSC Adv., 7, 46499-46504 (2017). https://doi.org/10.1039/C7RA09081A
- F. M. Delnick, G. Yang, E. C. Self, H. M. Meyer III, and J. Nanda, Investigation of complex intermediates in solvent-mediated synthesis of thiophosphate solid-state electrolytes, J. Phys. Chem. C, 124(50), 27396-27402 (2020). https://doi.org/10.1021/acs.jpcc.0c08761
- K. Yamamoto, M. Takahashi, K. Ohara, N. H. H. Phuc, S. Yang, T. Watanabe, T. Uchiyama, A. Sakuda, A. Hayashi, M. Tatsumisago, H. Muto, A. Matsuda, and Y. Uchimoto, Synthesis of sulfide solid electrolytes through the liquid phase: optimization of the preparation conditions, ACS Omega, 5(40), 26287-26294 (2020). https://doi.org/10.1021/acsomega.0c04307
- M. Calpa, N. C. Rosero-Navarro, A. Miura, K. Terai, F. Utsuno, and K. Tadanaga, Formation mechanism of thiophosphate anions in the liquid-phase synthesis of sulfide solid electrolytes using polar aprotic solvents, Chem. Mater., 32(22), 9627-9632 (2020). https://doi.org/10.1021/acs.chemmater.0c03198