DOI QR코드

DOI QR Code

In-situ Cross-linked Gel Polymer Electrolyte Using Perfluorinated Acrylate as Cross-linker

과불소화된 아크릴레이트 가교제로 제조된 직접 가교형 겔 고분자 전해질의 전기화학적 특성

  • Oh, Si-Jin (Polymer. Nano Science and Technology, Chonbuk National University) ;
  • Shim, Hyo-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Dong-Wook (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Myong-Hoon (Polymer. Nano Science and Technology, Chonbuk National University) ;
  • Lee, Chang-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kang, Yong-Ku (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 오시진 (전북대학교 고분자 공학과) ;
  • 심효진 (한국 화학연구원 소자재료 연구팀) ;
  • 김동욱 (한국 화학연구원 소자재료 연구팀) ;
  • 이명훈 (전북대학교 고분자 공학과) ;
  • 이창진 (한국 화학연구원 소자재료 연구팀) ;
  • 강영구 (한국 화학연구원 소자재료 연구팀)
  • Received : 2010.04.06
  • Accepted : 2010.05.06
  • Published : 2010.05.31

Abstract

The gel polymer electrolyte(GPE) were prepared by in-situ thermal cross-linking reaction of homogeneous precursor solution of perfluorinated phosphate-based cross-linker and liquid electrolyte. Ionic conductivities and electrochemical properties of the prepared gel polymer electrolyte with the various contents of liquid electrolytes and perfluorinated organophosphate-based cross-linker were examined. The stable gel polymer electrolyte was obtained up to 97 wt% of the liquid electrolyte. Ionic conductivity and electrochemical properties of the gel polymer electrolytes with the various chain length of perfluorinated ethylene oxide and different content of liquid electrolytes were examined. The maximum ionic conductivity of liquid electrolyte was measured to be $1.02\;{\times}\;10^{-2}\;S/cm$ at $30^{\circ}C$ using the cross-linker($PFT_nGA$). The electrochemical stability of the gel polymer electrolyte was extended to 4.5 V. The electrochemical performances of test cells composed of the resulting gel polymer electrolyte were also studied to evaluate the applicability on the lithium polymer batteries. The test cell carried a discharge capacity of 136.11mAh/g at 0.1C. The discharge capacity was measured to be 91% at 2C rate. The discharge capacity decreased with increase of discharge rate which was due to the polarization. After 500th charge/discharge cycles, the capacity of battery decreased to be 70% of the initial capacity.

본 연구에서는 organophosphate를 기반으로 한 과불소화된 아크릴레이트 가교제를 사용하여 제조한겔 고분자 전해질의 이온 전도도 및 전기화학적 특성을 평가하였다. 과불소화된 아크릴레이트 가교제를 사용하여 만든 겔 고분자 전해질은 액체전해질의 함량이 최대 97 wt%까지 안정한 겔 상태를 유지하였다. 본 연구에서 제조한 겔 고분자 전해질의 이온전도도는 $30^{\circ}C$에서 $1.0\;{\times}\;10^{-2}\;S/cm$의 값을 가졌다. 또한 전기화학적 안정성 테스트에서도 약 4.5V로 이상까지 산화에 의한 열화가 없이 안정하였다. 합성된 겔고분자 전해질을 리튬이온 고분자 전지에 적용하여 그 활용성을 평가하였다. 양극으로는 $LiCoO_2$를 사용하였으며 음극으로는 카본을 사용하였다. 이렇게 만든 리튬이온 고분자 전지는 0.1C에서 136.11 mAh/g의 용량으로 이론용량과 거의 비슷한 값을 나타내었으며, 2C 방전에서도 초기 용량의 91%를 유지하였다. 또한 500번의 충방전 후에도 초기 용량의 70%정도의 용량을 유지하였다.

Keywords

References

  1. G. Feuillade and Ph. Perche, ‘Ion-conductive macromolecular gels and membranes for solid lithium cells’ J. Appl. Electrochem., 5, 63 (1975). https://doi.org/10.1007/BF00625960
  2. M. George, C. Luo, C. Wang, E. Carretti, L. Dei, and R. G. Weiss, ‘Chemically and physically induced (reversible) gelation of organic liquids by monomeric and polymeric gelators’ Macromol. Symp., 227, 173 (2005). https://doi.org/10.1002/masy.200550917
  3. M. de Loos, B. L. Feringa, and J. H. van Esch, ‘Design and Application of Self-Assembled Low Molecular Weight Hydrogels’ J. Org. Chem., 17, 3615 (2005).
  4. L. A. Estroff and A. D. Hamilton, ‘Water gelation by small organic molecules’ Chem. Rev., 104, 1201 (2004). https://doi.org/10.1021/cr0302049
  5. J. Lee, Y. Kang, and D. H. Suh, ‘Ionic conductivity and electrochemical properties of cross-linked poly[siloxaneg-oligo(ethylene oxide)] gel-type polymer electrolyte’ Electrochim. Acta, 50, 351 (2004). https://doi.org/10.1016/j.electacta.2004.01.102
  6. X. Kang, ‘Lithium Batteries and Cathode Materials’ Chem. Rev., 104, 10(2004).
  7. K. Xu, M. S. Ding, S. Zhang, J. L. Allen, and T. R. Jow, ‘Evaluation of Fluorinated Alkyl Phosphates as Flame Retardants in Electrolytes for Li-Ion Batteries: I. Physical and Electrochemical Properties’ J. Electrochem. Soc., 150, A161 (2003). https://doi.org/10.1149/1.1533040
  8. K. Xu, S. Zhang, J. L. Allen, and T. R. Jow, ‘Nonflammable Electrolytes for Li-Ion Batteries Based on a Fluorinated Phosphate’ J. Electrochem. Soc., 149, A1079 (2002). https://doi.org/10.1149/1.1490356
  9. J. Y. song, Y. Y. Wang, and C. C. Wan, ‘Review of gel-type polymer electrolytes for lithium-ion batteries’ J. Power Sources, 77, 183 (1999). https://doi.org/10.1016/S0378-7753(98)00193-1
  10. M. Morita, H. Tannak, M. Ishikawa, and Y. Matsuda, ‘Effects of Crown-Ethers on the Electrochemical Properties of Polymeric Solid Electrolytes Consisting of Poly(Ethylene Oxide)-Grafted Poly(Methylmethacrylates)’ Solid State Ionics, 401, 86(1996).
  11. Y. Kang, H. J. Kim, E. Kim, B. Oh, and J. H. Cho, ‘Photocured PEO-based solid polymer electrolyte and its application to lithium polymer batteries’ J. Power Sources, 92, 255 (2001). https://doi.org/10.1016/S0378-7753(00)00546-2
  12. Y. Kang, J. Lee, D. H. Suh, and C. Lee, ‘A new polysiloxane based cross-linker for solid polymer electrolyte’ J. Power Sources, 146, 391 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.142
  13. J-A. Choi, Y. Kang, H. Shim, D. W. Kim, E. Cha, and D. -W. Kim, ‘Cycling performance of a lithium-ion polymer cell assembled by in-situ chemical cross-linking with fluorinated phosphorous-based cross-linking agent’ J. Power Sources, online released, doi:10.1016/j.jpowsour.2009.11.065.
  14. M. Egashira, H. Takahashi, and S. Okada, ‘Measurement of the electrochemical oxidation of organic electrolytes used in lithium batteries by microelectrode’ J. Power Sources, 92, 267 (2001). https://doi.org/10.1016/S0378-7753(00)00553-X
  15. C. M. Timperley, R. E. Arbon, and M. Bird, ‘Bis(fluoroalkyl)acrylic and methacrylic phosphate monomers, their polymers and some of their properties’ J. Fluorine Chem., 121, 23 (2003). https://doi.org/10.1016/S0022-1139(02)00314-7
  16. X. Wnag, W. Yasukawa, and S. Kasuya, ‘Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: II. The Use of an Amorphous Carbon Anode’ J. Elecrochem. Soc., 148, A1066 (2001). https://doi.org/10.1149/1.1397774
  17. K. Hayashi, Y. Nemoto, S. Tobishima, and J. Yamaki, ‘Mixed solvent electrolyte for high voltage lithium metal secondary cells’ Electrochim. Acta, 44, 2337 (1999). https://doi.org/10.1016/S0013-4686(98)00374-0
  18. J. R. Nair, C. Gerbaldi, G. Meligrana, and R. Bongiovanni, ‘UV-cured methacrylic membranes as novel gel-polymer electrolyte for Li-ion batteries’ J. Power Sources, 178, 751 (2008). https://doi.org/10.1016/j.jpowsour.2007.08.004
  19. H. S. Kim, J. H. Shin, and S. I. Moon, ‘Electrochemical properties of poly(tetra ethylene glycol diacrylate)-based gel electrolytes for lithium-ion polymer batteries’ J. Power Sources, 119-121, 482 (2003). https://doi.org/10.1016/S0378-7753(03)00269-6
  20. J. Y. Song, Y. Y. Wang, and C. C. Wan, ‘Conductivity Study of Porous Plasticized Polymer Electrolytes Basedon Poly (vinylidene fluoride) A Comparison with Polypropylene Separaters’ J. Electrochem. Soc., 147, 3219 (2000). https://doi.org/10.1149/1.1393886
  21. C. Gerbaldi, J. R. Nair, and G. Meligrana, ‘UV-curable siloxane-acrylate gel-copolymer electrolytes for lithiumbased battery applications’ Electrochim. Acta , 55, 1460 (2010). https://doi.org/10.1016/j.electacta.2009.05.055
  22. W. Qui, W. Ma, Q. Yang, Y. Fu, and S. Zong, ‘Novel preparation of nanocomposite polymer electrolyte and its application to lithium polymer batteries’ J. Power Sources., 138, 245 (2004). https://doi.org/10.1016/j.jpowsour.2004.06.061