DOI QR코드

DOI QR Code

Fabrication of Silica Nanoparticles by Recycling EMC Waste from Semiconductor Molding Process and Its Application to CMP Slurry

반도체 몰딩 공정에서 발생하는 EMC 폐기물의 재활용을 통한 실리카 나노입자의 제조 및 반도체용 CMP 슬러리로의 응용

  • Ha-Yeong Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Yeon-Ryong Chu (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Gyu-Sik Park (Department of Intelligent Nano Semiconductor, Hanbat National University) ;
  • Jisu Lim (Department of Intelligent Nano Semiconductor, Hanbat National University) ;
  • Chang-Min Yoon (Department of Chemical and Biological Engineering, Hanbat National University)
  • 김하영 (국립한밭대학교 화학생명공학과 ) ;
  • 추연룡 (국립한밭대학교 화학생명공학과 ) ;
  • 박규식 (국립한밭대학교 지능형나노반도체학과 ) ;
  • 임지수 (국립한밭대학교 지능형나노반도체학과 ) ;
  • 윤창민 (국립한밭대학교 화학생명공학과 )
  • Received : 2024.03.10
  • Accepted : 2024.03.20
  • Published : 2024.03.30

Abstract

In this study, EMC(Epoxy molding compound) waste from the semiconductor molding process is recycled and synthesized into silica nanoparticles, which are then applied as abrasive materials contains CMP(Chemical mechanical polishing) slurry. Specifically, silanol precursor is extracted from EMC waste according to the ultra-sonication method, which provides heat and energy, using ammonia solution as an etchant. By employing as-extracted silanol via a facile sol-gel process, uniform silica nanoparticles(e-SiO2, experimentally synthesized SiO2) with a size of ca. 100nm are successfully synthesized. Through physical and chemical analysis, it was confirmed that e-SiO2 has similar properties compared to commercially available SiO2(c-SiO2, commercially SiO2). For practical CMP applications, CMP slurry is prepared using e-SiO2 as an abrasive and tested by polishing a semiconductor chip. As a result, the scratches that are roughly on the surface of the chip are successfully removed and turned into a smooth surface. Hence, the results present a recycling method of EMC waste into silica nanoparticles and the application to high-quality CMP slurry for the polishing process in semiconductor packaging.

본 연구에서는 반도체 패키징의 몰딩 공정에서 발생하는 EMC 폐기물을 재활용하여 실리카 나노입자를 성공적으로 제조하였으며, 이를 CMP 공정용 슬러리의 연마재 물질로 응용하였다. 상세히는, EMC 폐기물을 암모니아 용액과 소니케이터를 활용하여 열과 에너지를 가하는 에칭 과정을 통해 실리카 나노입자를 제조하기 위한 실라놀 전구체를 추출하였다. 이후 실라놀 전구체를 활용하여 졸-겔법을 통해 약 100nm를 나타내는 균일한 구형의 실리카 나노입자(e-SiO2, experimentally synthesized SiO2)를 합성하였다. 제조한 e-SiO2는 물리화학적 분석을 통해 상용화된 실리카 입자(c-SiO2, commercially SiO2)와 동일한 형상과 구조를 지니고 있음을 확인할 수 있었다. 최종적으로, e-SiO2를 연마재로 사용하여 CMP 공정용 슬러리를 제조하여 실제적인 반도체 칩의 연마 성능을 확인하였다. 그 결과, 반도체 칩의 표면에 존재하던 스크래치가 성공적으로 제거되어 매끈한 표면으로 바뀌게 된 것을 확인하였다. 본 연구 결과는 물질의 재활용법에 대한 설계를 통해 EMC 폐기물의 부가가치를 향상시키기 위하여 반도체 공정에서 대표적으로 활용되는 고부가가치 소재인 실리카 입자로 성공적으로 제조하고 이를 응용하는 방법에 대해 제시하였다.

Keywords

Acknowledgement

이 연구는 2024년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 미래도전국방기술 연구개발사업임(No. 915066201)

References

  1. Baek, J.-H., Park, D.-W., Oh, G.-H., Kawk, D.-O., Park, S. S. and Kim, H.-S., "Effect of cure shrinkage of epoxy molding compound on warpage behavior of semiconductor package", Mater. Sci. Semicond. Process., 148, p. 106758. (2022). 
  2. Shen, C.-W., Tran, P. P. and Ly, P. T. M., "Chemical waste management in the U.S. semiconductor industry", Sustainability, 10(5), p. 1545. (2018). 
  3. Lee, C.-C., Lee, C.-C. and Chang, C.-P., "Simulation methodology development of warpage estimation for epoxy molding compound under considerations of stress relaxation characteristics and curing conditions applied in semiconductor packaging", Mater. Sci. Semicond. Process., 145, p. 106637. (2022). 
  4. Liu, S. L., Chen, G. and Yong, M. S., "EMC characterization and process study fir electronics packaging", Thin Solid Films, 462-463, pp. 454~458. (2004). 
  5. Inamdar, A., Yang, Y.-H., Prisacaru, A., Gromala, P. and Han, B., "High temperature aging of epoxy-based molding compound and its effect on mechanical behavior of molded electronic package", Polym. Degrad. Stab., 188, p. 109572. (2021). 
  6. Linec, M. and Music, B., "The effects of silica-based fillers on the properties of epoxy molding compounds", Materials, 12(11), p. 1811. (2019). 
  7. Li, T., Li, P., Sun, R. and Yu, S., "Polymer-based nanocomposites in semiconductor packaging", IET Nanodielectrics, 6(3), pp. 147~158. (2023). 
  8. Phansalkar, S. P., K im, C. and Han, B., "Effect of critical properties of epoxy molding compound on warpage predictionK A critical review", Microelectron. Reliab., 130, p. 114480. (2022). 
  9. Yeon, S., Park, J. and Lee, H.-J., "Compensation method for die shift caused by flow drag force in wafer-level molding process", Micromachines, 7(6), p. 95 (2016). 
  10. Gan, C. L., Chung, M.-H., Lin, L.-F., Huang, C.-Y. and Takiar, H., "Evolution of epoxy molding compounds and future carbon materials for thermal and mechanical stress management in memory device packaging: A critical review", J. Mater. Sci.: Mater. Electron., 34(30), p. 2011. (2023). 
  11. Xie, W., Zhang, Z., Wang, L., Cui, X., Yu, S., Su, H. and Wang, S., "Chemical mechanical polishing of silicon wafers using developed uniformly dispersed colloidal silica in slurry", J. Manuf. Process., 90, pp. 196~203. (2023). 
  12. Yoon, C.-M., Lee, K., Noh, J., Lee, S. and Jang, J., "Electrorheological performance of multigram-scale mesoporous silica particles with different aspect ratios", J. Mater. Chem., 4(8), pp. 1713~1719. (2016). 
  13. Yoon, C.-M., Cho, K. H., Jang, Y., Kim, J., Lee, K., Yu, H., Lee, S. and Jang. J., "Synthesis and electroresponse activity of porous polypyrrole/silica-titania core/shell nanoparticles", Langmuir., 34(51), pp. 15773~15782. (2018). 
  14. Yoon, C.-M., "Proposal of atmospheric heating method for recycling silicon sludge from semiconductor process", J. Korean Soc. Environ., 3(23), pp. 75~81. (2023). 
  15. Jal, P. K., Sudarshan, M., Saha, A., Patel, S. and Mishra, B. K., "Synthesis and characterization of nanosilica prepared by precipitation method", Colloids Surf A: Physicochem. Eng. Asp., 240(1-3), pp. 173~178. (2004). 
  16. Kim, E., Lee, J., Park, Y., Shin, C., Yang, J. and Kim, T., "Shape classification of fumed silica abrasive and its effects on chemical mechanical polishing", Powder Technol., 381, pp. 451~458. (2021). 
  17. Ren, G., Su, H. and Wang, S., "The combined method to synthesis silica nanoparticle by Stober process", J. Sol-Gel Sci. Technol., 96(1), pp. 108~120. (2020). 
  18. Jiang, X., Tang, X., Tang, L., Zhangg, B. and Mao, H., "Synthesis and formation mechanism of amorphous silica particles via sol-gel process with tetraethylorthosilicate", Ceram. Int., 45(6), pp. 7673~7680. (2019). 
  19. Kang, Y.-J., Prasad, Y. N., Kim, I.-K., Jung, S.-J. and Park, J.-G., "Synthesis of Fe metal precipitated colloidal silica and its application to W chemical mechanical polishing (CMP) slurry", J. Colloid Interface Sci., 349(1), pp. 402~407. (2010). 
  20. Rashad, M. M., Hessien, M. M., Abdel-Aal, E. A., El-Barawy, K. and Singh, R. K., "Transformation of silica fume into chemical mechanical polishing (CMP) nano-slurries for advanced semiconductor manufacturing", Powder Technol., 205(1-3), pp. 149~154. (2011). 
  21. Wang, S. W., Liu, T., Dong, F., Sun, Y., Xue, L., Li, R., Han, X., Tian, Z. and Liu, S., "Surface action mechanism and design considerations for the mechanical integrity of Cu/low K BEOL interconnect during chemical mechanical polishing process", Microelectron. Reliab., 134, p. 114565. (2022). 
  22. Liu, X., Sun, Q., Huang, Y., Chen, Z., Liu, G. and Zhang. D. W., "Optimization of TSV leakage in Via-Middle TSV process for wafer-level packaging", Electronics, 10(19), p. 2370. (2021). 
  23. Wang, S., Zhang, H., Tian, Z., Liu, T., Sun, Y., Zhang, Y., Dong, F. and Liu, S., "Optimization of Cu protrusion of wafer-to-wafer hybrid bonding for HBM packages application", Mater. Sci. Semicond. Process., 152, p. 107063. (2022). 
  24. Li, G., Xiao, C., Zhang, S., Sun, R. and Wu, Y., "An experimental investigation of silicon wafer thinning by sequentially using constant-pressure diamond grinding and fixed-abrasive chemical mechanical polishing", J. Mater. Process. Technol., 301, p. 117453. (2022). 
  25. Apel, Y. P., Blonskaya V. I., Orelovitch, L. O., Ramirez, P. and Sartowska, A. B., "Effect of nanopore geometry on ion current rectification", Nanotechnology, 22(17), p. 175302. (2011). 
  26. Yoon, C.-M., Cho, K. H., Jang, Y., Kim, J., Lee, K., Yu, H., Lee, S. and Jang, J., "Synthesis and electroresponse activity porous polypyrrole/silica-titania core/shell nanoparticles", Langmuir., 34(51), pp. 15773~15782. (2018). 
  27. Yoon, C.-M., Noh, J., Jang, Y. and Jang, J., "Fabrication of a silica/titania hollow nanorod and its electroresponsive activity", RSC Advances, 7(32), pp. 19754~19763. (2017). 
  28. Ullah, R., Li, H. and Zhu, Y., "Terahertz and FTIR spectroscopy of 'Bisphenol A'", J. Mol. Struct., 1059(1), pp. 255~259. (2014). 
  29. Corres, M. A., Zubitur, M., Cortazar, M. and Mugica A., "Thermal and thermo-oxidative degradation of poly(hydroxy eher of bisphenol-A)studied by TGA/FTIR and TGA/MS", J. Anal. Appl. Pyrolysis., 92(2), pp. 407~416. (2011). 
  30. Lee, S., "Highly uniform silica nanoparticles with finely controlled sizes for enhancement of electroresponsive smart fluids", J. Ind. Eng. Chem., 77, pp. 426~431. (2019). 
  31. McGrath, J. and Davis, C., "Polishing pad surface characterization in chemical mechanical planarization", J. Mater. Process. Technol., 153-154(10), pp. 666~673. (2004). 
  32. Zhang, Z., Jin, Z. and Guo, J., "The effect of the interface reaction mode on chemical mechanical polishing", CIRP J. Manuf. Sci. Technol., 31, pp. 539~547. (2020).