• Title/Summary/Keyword: Precast concrete deck

Search Result 92, Processing Time 0.038 seconds

Load carrying capacity of Structural Composite Hybrid System (Green Frame) (철골 프리캐스트 콘크리트 합성보 성능 분석 연구)

  • Hong, Won-Kee;Kim, Sun-Kuk;Kim, Seung-Il
    • KIEAE Journal
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • An experimental investigation of composite beams composed of wide flange steel and precast concrete is presented. The bottom flange of the steel section is encased in precast concrete. The composite beams tested in this study were designed to reduce the depth of the slab and beam. The slabs are constructed on top of the edges of the Structural Composite Hybrid System, instead of on top of the steel flange, decreasing the depth of the beams. When concrete is cast on the metal deck plate located on the edges of the precast concrete, the weight of the concrete slabs and other construction loads must be supported by the contacts between the steel and the precast concrete. This interface must not exhibit bearing failures, shear failures, and failures caused by torque due to the loading of the precast concrete. When the contact area between the concrete and the bottom flange of the steel beam is small, these failures of the concrete are likely and must be prevented. The premature failure of precast concrete must not also be present when the weight of the concrete slabs and other construction loads is loaded. This paper presents a load carrying capacity of Structural Composite Hybrid System in order to observe the failure mode. The symmetrically distributed loading that caused the failure of the composite beam was found. The paper also provides design recommendations of such type of composite structure.

Applicability Evaluation of Precast Deck to the Maglev Guideway System : Mock-Up Construction Test (프리캐스트 바닥판의 자기부상열차 가이드웨이 시스템 적용성 평가 : 모의 시공 실험)

  • Jin, Byeong-Moo;Kim, In-Gyu;Kim, Young-Jin;Oh, Hyung-Chul;Ma, Hyang-Wook;Lee, Yung-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.57-60
    • /
    • 2008
  • Maglev is a system that a train runs levitated above a rail. Therefore it is very important to maintain a constant levitation gap for achieving serviceability and ride comfort. This study is a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program in Korea, started in 2006. The aim of this study is development of rapid constructions of bridge superstructure for maglev. At present, precast deck is widely used because of its superiority to cast-in-place concrete on quality and the term of works. The research group suggested basic systems of maglev guideway with PSC-U type and trapezoidal open steel box type girder, and precast deck, cooperating with Korea Railroad Research Institute, the managing institute of the 3-1 subject. In this study, a mock-up consisted of girders, decks and rail was fabricated and test was performed for constructability, serviceability and maintenance evaluation of PSC U-type girder, precast deck, and new guide rail system.

  • PDF

FE Analysis on Maglev Guiderail Connection System (자기부상열차 가이드레일 연결시스템의 유한요소 해석)

  • Jin, Byeong-Moo;Lee, Yun-Seok;Kim, In-Gyu;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.203-204
    • /
    • 2009
  • The maglev guiderail systems, which receive directly the live load of maglev train and transfer the load to the main girder, is a important constituent in guideway system. As a process of development of maglev guideway girder adopting the precast decks, static and fatigue loading tests of the connections systems of precast deck and guiderail have been accomplished. In this stude, the structural characteristics of precast deck-guiderail connection systems are being evaluated by performing a detailed finite element analyses.

  • PDF

Numerical simulation by the finite element method of the constructive steps of a precast prestressed segmental bridge

  • Gabriela G., Machado;Americo Campos, Filho;Paula M., Lazzari;Bruna M., Lazzari;Alexandre R., Pacheco
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.163-177
    • /
    • 2023
  • The design of segmental bridges, a structure that typically employs precast prestressed concrete elements and the balanced cantilever construction method for the deck, may demand a highly complex structural analysis for increased precision of the results. This work presents a comprehensive numerical analysis of a 3D finite element model using the software ANSYS, version 21.2, to simulate the constructive deck stages of the New Guaiba Bridge, a structure located in Porto Alegre city, southern Brazil. The materials concrete and steel were considered viscoelastic. The concrete used a Generalized Kelvin model, with subroutines written in FORTRAN and added to the main model through the customization tool UPF (User Programmable Features). The steel prestressing tendons used a Generalized Maxwell model available in ANSYS. The balanced cantilever constructive steps of a span of the New Guaiba Bridge were then numerically simulated to follow the actual constructive sequence of the bridge. A comparison between the results obtained with the numerical model and the actual vertical displacement data monitored during the bridge's construction was carried out, showing a good correlation.

The Structural Reinforcing of PCC-Deck with Cantilever (캔틸레버를 갖는 PCC-Deck의 구조보강)

  • Lho, Byeong-Cheol;Kim, Chang-Kyo;Park, Jong-Hyeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.21-30
    • /
    • 2013
  • LB-Deck is one of the widely used member in interior part of girders as a permanent formwork in structures, but it is not easy to apply to the exterior part of girder due to the overturning and excessive deflection. Considering allowable deflection and safety of the exterior part, Precast Concrete Cantilever Deck (PCC-Deck) is proposed with normal LB-Deck in inner part and extended bars of LB-Deck in outer part. Both numerical analyses and experimental tests were compared to check the safety and allowable deflection for 6 types of PCC-Deck, and D-type (with 16 mm top bar, 6 mm lattice bar, 12 mm bottom bar) is suggested as an optimal structural reinforcement to the 28 kN of maximum load and 27.49 mm of final deflection. The load resisting ratio of D-type under working load of 10 kN was about 2.8 times and 77.5% of improvement was observed.

Structural Characteristics and Field Application of 'Delta Deck' Composite Bridge (복합소재 교량 바닥판 '델타데크'의 구조적 특성과 현장적용)

  • 이성우;박신전;김병석;정규상
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.201-208
    • /
    • 2004
  • To substitute conventional reinforced-concrete bridge deck, glass composite precast bridge deck - Delta Deck/sup TM/, which possesses advantages of light weight, high strength, corrosion resistance and durability, is developed for the DB24 truck load. Pultruded composite bridge deck is designed and fabricated. To verify serviceability and structural safety, finite element analysis, structural testing such as flexural test, local fatigue test, flexural fatigue test and field tests are conducted. In this paper structural characteristics of developed deck and its field application in Korea is presented.

  • PDF

Field Application and Load Test of Composite Deck Bridge (복합소재 바닥판 교량의 현장적용과 재하시험)

  • Lee Sung-Woo;Kim Je-In;Jo Nam-Hoon;Yang Pil-Seung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.113-120
    • /
    • 2005
  • To substitute conventional reinforced-concrete bridge deck glass composite precast bridge deck - Delta $Deck^{TM}$, which possesses advantages of light weight, high strength, corrosion resistance and durability, is developed for the DB24 truck load. Pultruded composite bridge deck is designed and fabricated. In this paper some field applications and field load test of developed composite deck bridge are presented.

  • PDF

Application of FRP-Concrete Composite Deck to Cable Stayed Bridge (FRP-콘크리트 합성 바닥판의 사장교 적용)

  • Cho, Keun-Hee;Park, Sung-Yong;Kim, Sung-Tae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.217-220
    • /
    • 2008
  • A modified FRP-concrete composite deck applicable to cable stayed bridge with long girder-to-girder span is proposed, and its design and economical efficiency are presented. The existing FRP-concrete composite deck has low section stiffness due to adoption of GFRP panel with low elastic modulus, which arrives at difficulty in meet of serviceability limit such as deck deflection. So a new-type FRP-concrete composite deck, named precast FRP-concrete deck, is developed by extensioning concrete at the both ends of FRP-concrete composite deck, which brings the effect of reduction of net span length of deck. Compared to the existing FRP-concrete composite deck this modified deck has the advantage of increasing span length but slightly increases self weight. For this type of deck the section optimization is carried out for the cases of simply supported on girder and composite to girder. The optimized deck was applied to cable stayed bridge with a center span length of 540m, and as a result it is verified that PFC deck can be applied efficiently to cable stayed bridge due to reduction of quantity of upper structure.

  • PDF

The Experimental Study on Transverse Field Joint Method of Precast Road Deck Slab of Double Deck Tunnel in Great Depth (대심도 복층터널 프리캐스트 중간슬래브의 횡방향 현장이음방식에 대한 실험연구)

  • Lee, Doo-Sung;Kim, Bo-Yeon;Bae, Chul-Gi;Hur, Jae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.23-32
    • /
    • 2017
  • The joints between precast PSC slabs of the intermediate road slab in double deck tunnel are inevitably generated in the road traffic vehicle traveling direction. Therefore, it is important to make the behavior of parts on the joint in one piece. The imtermediate road slab system of double deck tunnel in great depth proposed in this study will be constructed with precast PSC slab in order to minimize the construction period. And the joint connection between the precast slab has been developed in two methods: the 'Transverse tendon reinforcement method' and 'High strength bolts connection method'. Also, the experiments were performed for the full scale model in order to evaluate the performance of the intermediate road deck slab with two type joints systems, the structural stability was verified through the F.E.M analsysis. The results of static loading test and F.E.M analysis investigated a very stable behavior of intermediate road deck slab in double deck tunnel applying the joint methods developed in this study, in the cracks and deflections to satisfy the design standards of Highway Roads Bridges (2011), it was determined that there is no problem even servicebility.

Construction of the longest open toped steel box girder composite bridge in the country (국내 최장 개구제형 합성형교 시공)

  • Oh, Hyun-Chul;Ma, Hyang-Wook;Kim, In-Gyu;Kim, Young-Jin;Jang, Seung-Kyoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.165-166
    • /
    • 2009
  • This paper is to research for construction of the longest open toped steel box girder composite bridge using precast concrete deck in the country. This type bridge can bring down the construction costs by reducing the steel's weight used it's girders. And, it also can reduce working hours for construction over 6months by applying the precast deck system. I will introduce the process of construction the longest this type bridge within the country named Seochon Bridge

  • PDF