• Title/Summary/Keyword: Power feedback

Search Result 1,262, Processing Time 0.028 seconds

A Class E Power Oscillator for 6.78-MHz Wireless Power Transfer System

  • Yang, Jong-Ryul
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.220-225
    • /
    • 2018
  • A class E power oscillator is demonstrated for 6.78-MHz wireless power transfer system. The oscillator is designed with a class E power amplifier to use an LC feedback network with a high-Q inductor between the input and the output. Multiple capacitors are used to minimize the variation of the oscillation frequency by capacitance tolerance. The gate and drain bias voltages with opposite characteristics to make the frequency shift of the oscillator are connected in a resistance distribution circuit located at the output of the low drop-out regulator and supplied bias voltages for class E operation. The measured output of the class E power oscillator, realized using the co-simulation, shows 9.2 W transmitted power, 6.98 MHz frequency and 86.5% transmission efficiency at the condition with 20 V $V_{DS}$ and 2.4 V $V_{GS}$.

Advanced Control of Three-Phase Four-Wire Inverters using Feedback Linearization under Unbalanced and Nonlinear Load Conditions (불평형 비선형 부하시 궤환선형화 기법을 이용한 3상 4선식 인버터의 제어 성능 개선)

  • Vo, Nguyen Qui Tu;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.333-341
    • /
    • 2013
  • In this paper, a feedback linearization control is proposed to regulate the output voltages of a three-phase four-wire inverter under the unbalanced and nonlinear load conditions. First, the nonlinear model of system including the output LC filters is derived in the d-q-0 synchronous reference frame. Then, the system is linearized by the multi-input multi-output feedback linearization. The tracking controllers for d-q-0-components of three-phase line-to-neutral load voltages are designed by linear control theory. The experimental results have shown that the proposed control method gives the good performance in response to the load conditions.

Average Current Mode Control for LLC Series Resonant DC-to-DC Converters

  • Park, Chang Hee;Cho, Sung Ho;Jang, Jinhaeng;Pidaparthy, Syam Kumar;Ahn, Taeyoung;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • An average current mode control scheme that consistently offers good dynamic performance for LLC series resonant DC-to-DC converters irrespective of the changes in the operational conditions is presented in this paper. The proposed control scheme employs current feedback from the resonant tank circuit through an integrator-type compensation amplifier to improve the dynamic performance and enhance the noise immunity and reliability of the feedback controller. Design guidelines are provided for both current feedback and voltage feedback compensation. The performance of the new control scheme is demonstrated through an experimental 150 W converter operating with 340 V to 390 V input voltage to provide a 24 V output voltage.

Combined Design of Robust Control System and Structure System (강인성 제어 시스템과 구조 시스템의 통합 최적 설계)

  • Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.38-43
    • /
    • 2003
  • This paper proposes an optimum design problem of structural and control systems. taking a 3-D truss structure as an example. The structure is supposed to be subjected to initial static loads and time-varying disturbances. The structure is controlled by a state feedback $H_{\infty}$ controller to suppress the effect of the disturbances. The design variables are the cross sectional areas of truss members. The structural objective function is the structural weight. As the control objective, we consider two types of performance indices. The first function represents the effect of the initial loads. The second one is the norm of the feedback gain. These objective functions are in conflict with each other. Then, first, two control objective functions are transformed into one control objective by the weighting method. Next, the structural objective is treated as the constraint. By introducing the second control objective which considers the magnitude of the feedback gain, we can per limn the design which is robust in modeling errors.

  • PDF

Intelligent Control of Nuclear Power Plant Steam Generator Using Neural Networks (신경회로망을 이용한 원자력발전소 증기발생기의 지능제어)

  • Kim, Sung-Soo;Lee, Jae-Gi;Choi, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.127-137
    • /
    • 2000
  • This paper presents a novel neural based controller which controls the water level of the nuclear power plant steam generator. The controller consists of a model reference feedback linearization controller and a PI controller for stabilizing the feedback linearization controller. The feedback linearization controller consists of a neural network model and an inversing module which uses the neural network model for computing the control input to the steam generator. We chose Piecewise Linearly Trained Network(PLTN) and Recurrent Neural Netwrok(RNN) for an approximator of the plant and used these approximators in calculating the input from the feedback linearization controller. Combining the above two controllers gives a result of better performance than the case which uses only a PI controller Each control result of PLTN and RNN is given.

  • PDF

Novel Position Controller for PMSM Based on State Feedback and Load Torque Feed-Forward

  • Zheng, Zedong;Li, Yongdong;Fadel, Maurice
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.140-147
    • /
    • 2011
  • In this paper, a novel position controller based on state feedback and feed-forward is proposed. Traditional position and speed controllers are replaced by a single controller with the position and speed as state feedbacks, and the position command and load torque as feed-forwards. The feedback and feed-forward gains are obtained by analytic modeling and design. The load torque, rotor speed and position are estimated by an observer based on a Kalman filter (KF) with a low resolution mechanical position sensor. Feed-forward compensation by an estimated load torque is used to improve the dynamic performance during load torque changes.

Implementation of Multi-adaptive Filter for EOG Removal and Biofeedback Output Controller

  • Ahn, Bo-Sep;Kim, Pil-Un;Cho, Jin-Ho;Kim, Myoung-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1650-1656
    • /
    • 2004
  • In this paper, a multi-adaptive filter is proposed for removing EOG and the 60 Hz power supply noise from EEG measured in the frontal lobe and the feedback output control method is implemented for biofeedback. The multi-adaptive filter has been implemented on the TMS320C6711 DSP system and the feedback output control algorithm has been realized by calculating the ratio of alpha wave on the TMS320C31 DSP system with real time performance. Through the experiment using the implemented multi-adaptive filter and feedback output controller, we demonstrate that the proposed adaptive filter effectively removes EOG and the 60 Hz power supply noise from the measured EEG in the frontal lobe and the feedback algorithm controls the level of stimulation by the ratio of the alpha wave.

  • PDF

Sliding Mode Control of Three-Phase Four-Leg Inverters via State Feedback

  • Yang, Long-Yue;Liu, Jian-Hua;Wang, Chong-Lin;Du, Gui-Fu
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1028-1037
    • /
    • 2014
  • To optimize controller design and improve static and dynamic performances of three-phase four-leg inverter systems, a compound control method that combines state feedback and quasi-sliding mode variable structure control is proposed. The linear coordinate change matrix and the state variable feedback equations are derived based on the mathematical model of three-phase four-leg inverters. Based on system relative degrees, sliding surfaces and quasi-sliding mode controllers are designed for converted linear systems. This control method exhibits the advantages of both state feedback and sliding mode control. The proposed controllers provide flexible dynamic control response and excellent stable control performance with chattering suppression. The feasibility of the proposed strategy is verified by conducting simulations and experiments.

Adaptive Output-feedback Neural Control for Strict-feedback Nonlinear Systems (strict-feedback 비선형 시스템의 출력궤환 적응 신경망 제어기)

  • Park Jang-Hyun;Kim Il-Whan;Kim Seong-Hwan;Moon Chae-Joo;Choi Jun-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.526-528
    • /
    • 2006
  • An adaptive output-feedback neural control problem of SISO strict-feedback nonlinear system is considered in this paper. The main contribution of the proposed method is that it is shown that the output-feedback control of the strict-feedback system can be viewed as that of the system in the normal form. As a result, proposed output-feedback control algorithm is much simpler than the previous backstepping-based controllers. Depending heavily on the universal approximation property of the neural network (NN) only one NN is employed to approximate lumped uncertain nonlinearity in the controlled system.

  • PDF

Instantaneous Voltage Control of PWM Converters Using Feedback Linearization (궤환선형화 기법을 이용한 PWM 컨버터의 순시전압 제어)

  • 이지명;이기도;이동춘
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.175-183
    • /
    • 1999
  • For fast response of the dc output voltage in P\hi1'v1 converter, it is desirable that the relation of power balance of the i input and output terminals is introduced to the system modeling. In this case, controller desi밍1 is not easy since the m model is nonlinear. In this paper, a nonlinear control them${\gamma}$ using input-output feedback linearization is used to solve t the nonlinear problem of the system. By nonlinear control. the voltage transient response can be faster, and it is also p possible to control the output voltage to be constant with smaller output filter capacitance for load disturbance.

  • PDF