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ABSTRACT

An adaptive output-feedback neural control problem of
SISO strict-feedback nonlinear system is considered in this
paper. The main contribution of the proposed method is that
it is shown that the output-feedback control of the
strict-feedback system can be viewed as that of the system
in the normal form. As a result, proposed output—feedback
control algorithm is much simpler than the previous
backstepping-based controllers. Depending heavily on the
universal approximation property of the neural network (INN)
only one NN is employed to approximate lumped uncertain
nonlinearity in the cont-olled system..

1. Introduction

In order to cope with a nonlinear system with nonlinearly
parameterized or unstructured  uncertainties, control
approaches using universal approximation properties of fuzzy
logic system (FLS) and neural network (NN) have been
extensively studied [1-8]. Beside, backstepping contorl
scheme has been a powerful method for synthesizing
adaptive controller for the class of nonintinear systems with
linearly parameterized uncertainty. Recently, to broaden the
class of nonlinear systems that can be dealt with, some
researchers have been tried to combine adaptive
backstepping scheme with the approximator-based contollers.
In [2, 10-16], several adaptive backstepping approaches for
strict- and pure-feedback nonlinear systems based on
universal approximators have been proposed. In those
algorithms, adaptive backstepping design provides a
systematic method for the design of controller for the
system of the form:

x; = fL x)+gl x)x, ,i=1,-,n—1

%, = f,{ x)+& x,)u (1)
y=x
where X,‘=[x1"",x,,] TERi, Z'=]_,‘”,7l and y=R

and y= R are the state vector and the system input and

output, respectively; f{ +) and g{ ‘), ;=1,-
unknown smooth functions.

N dare

in the previous
based
backstepping design method. First of all, some very tedious

However, there are some problems

adaptive  approximator-based  controllers on
and complex analysis is needed to determine regression
virtual

complexity is inherited to the approximator-based controller.

matrices, controls and their derivatives.  The

Moreover, the complexity grows in geometrical progression
as the order of the controlled system increases. For the
practical implementation, this complexity must be avoided.
Another problem is that, since the time-derivatives of the
virtual control term are also unavailable, they must be the
part of the inputs to the approximators. This results in the
severe increments of the dimensions of the approximators. -

In this paper, we propose an adaptive output-feedback
neural controller for (1) which is not based on backstepping
scheme. To the author's knowledge, there is no results
available in the literature to control the uncertain
strict-feedback system (1) whose output is the only
measurable variable. The key point of the proposed method
is that the state-feedback control problem of the
strict-feedback system is viewed as the output-feedback.one
of the nonlinear system in the normal form. Based on this
fact, it is shown that controller design and stability analysis
is much simpler than the previous backstepping -based
algoﬁthms. Only one radial-basis function network (RBFN)
with y4+] input variables is employed to approximate
unknown lumped nonlinearity, which sets the simplicity of
our proposed control stherpe off very well.

2. Problem. Formulation
In this paper, we consider the system (1) with the

measurable state vector X=X, With regard to
controllability, the following assumption must be made.
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Assumption 1
Without loss of generality, we assume that g{ x;)>0 for

- The signs of the gs are all known

all XiER, =1, n
The control objectives are that output y tracks the desired
output ¥y and all the signals involved are bounded.

By induction, if we define a@;=f; and B{=g;, the
following is satisfied for =2, n

-zi = a’,~_1( Xi—1)+ﬁi—l( xi—l)xi 2
z;=af x)tBL x)xin
where
_ i—] aa,-_ aBi—l
al x,) = ,Z}( 8x_,-1 +—~——axj x,)(fj+g;xj+1)
+bi—1fi . (3)

B,( X,') = ﬂi—lgi=ggj-

As a result, the strict-feedback system (1) can be
redescribed as the following normal form with respect to

the newly defined state variables zs:
2; = 24y, =1,,n—1

z,= a{ x)+B,( X)u @
y= 2z

Also, it is easy to show that there exist a vector function

( 2=x where
r( 2=[z n( z) r( z)» 7 2] &)
Substituting this into (4) yields

% =2, =137

2z, = a{ t( )8 1( Du ®)
=d z)+H 2u
y=2z

It should be noted that apart form the fact that functions
a( -) and p( -) are functions of x they are totally
unknown. From assumption 1, it is also noted that a
constant o> 0 exists such that U x)=b, VxeR"
This assumption poses a controllable condition on the
system (4).

3. Controller Design
3.1 Higher—order observer and lumped uncertanty

As can be observed in (4) and (6), the zs are
incomputable since the @s and &s are unknown functions.
Thus, we employ a high~gain observer (HGO) to estimate
2, ;=2 -+, n as the following lemma.

Lemma 1. Suppose the function (#) and its first 4—]

derivatives are bounded. Consider the following linear
system:

& =&

65'2 = 53 @

e, = —di&,~adt, 1~ —d, 15— +KD

where gis a small design constant and parameters, @ to
polynomial
s"+dys" 1 4--+d,_;s+1 is Hurwitz. Then, there

exist positive constants # and ¢ such that VY ¢) ¢* we
have

d,-y are chosen such that the

| z—zl<eh
&6 & ®
1 e ’ 62 L} 611—1 .
The proof of Lemma 1 can be found in [12].

The vector y; e and a filtered tracking error g are
then defined as follows:

Vg = [3’4, 3’4"‘,Y¢$n_1)]T ‘
e= 2— yd
n—1 9
s = (72 +/1) e=[AT 1le ©

€ = Y ViTR2 Yy

where  A={2 "L (n=DA"2, -, (n—DAIT  with
A> 0. The estimations of e and g using (9) are denoted
as follows:

=5_WA km
s =[A7 1]e.

Lemma 2 : Considering that (1) satisfies Assumption 1, if
the ideal control with HGO (7) is designed as

> D)

o= —ks—uf z,7) (11
» _ d Z) IAZZ
UL 2, ) = Kz) . (12

where %> () is a design constant, then the filtered tracking
error s i1s uniformly ultimately bounded.

In the proposed control scheme, only one RBFN is
employed to estimate the following unknown function (12).
The input vector to the RBFN is denoted by x,~,,=[ A aT
that will be replaced by the estimated vector

’;mz[ Z TeR! later.
3.2 Brief description of RBFN
In this paper, one RBFN is employed to capture the

unknown nonlinearity (10) of the system. In general, the
output of the multi-input single-output RBFN is described
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by

2 x)=wTo( x ). (13)

Here, x,=[ xT 217eR™1 is the input vector to the
RBFN; %R the RBFN outpu; weRL, the adjustable
parameter vector; ¢X - ): R "*1—RL, a nonlinear vector
function of the inputs; J, the number of RBFs. The gh
element of w w; 1=1,---,L, is the synaptic weight
between the gh neuron in the hidden layer, and output
neuron and @ X)) is a Gaussian function in the form of

| X, my

¢i( X in)= exp(— 202 (14)

where mis a (y+])-dimensional vector representing the

center of the gh basis function, and ¢; is the vanance
representing the spread of the basis function. The primary
advantage of RBFN is that it has the capability to
approximate nonlinear mappings to any degree of accuracy.

3.3 Control and adaptive laws and stability analysis

Substituting the unavailable 2 into %y in (13), we
determine the control input as follows:

u=—ks— w 0 X ,). (15)

The adaptive law for the W is chosen as the following
lemma.

Lermma 3 : The update law for Wwis determined as
W=A30( X ;) — o WNSIW) (16)

where yis the positive learning rate and
Co

as( ";’) = Ew .
0 otherwise

it Wl g an

with €, being a design constant and |®|<c, Then,
| Wi<e,,.
Theorem 1 : Consider the adaptive system comprising (1)
under assumption 1, controller (15) with HGO (7) and
adaptive law (16). The filtered error g is semi-globally
uniformly ultimately bounded.

The proof is omitted.
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