• Title/Summary/Keyword: Power distribution lines

Search Result 306, Processing Time 0.032 seconds

A Study on the breakdown reduction of porcelain insulators (자기제 애자의 절연파괴 감소대책 연구)

  • Song, I.K.;Park, K.P.;Kim, Y.L.;Kim, K.W.;Kwak, H.R.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1042-1044
    • /
    • 1995
  • This paper provides the results and analyses of investigations into porcelain suspension insulators failures on the KEPCO system. The high failure rate of suspension insulators on distribution lines has been attributed to the volume expansion of the cement, the insulation puncture breakdown of the porcelain and the power arc failure. The utility must use only the good insulators and at least reduce the insulator failure rate. So, this paper recommends that the utility make test criteria(cement expansion test, steep front-of-wave flashover voltage test and power arc test. etc) on the suspension insulators.

  • PDF

The Suppression of Structural Vibration Using Cantilevers as Multiple Tuned Mass Damper (외팔보 형태의 수동형 Multiple Tuned Mass Damper를 이용한 구조물의 진동 억제)

  • 박재관;백윤수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.169-176
    • /
    • 1996
  • In order to suppress the structural vibration more effectively, Multiple Tuned Mass Damper(MTMD) which is composed of a number of Tuned Mass Damper(TMD) can be used. Especially, the passive MTMD has several advantages over active TMD like easy installment and maintenance, cost and performance for power failure situation(severe damage of power lines from earthquake), etc.. For this purpose the mass and damping ratio of MTMD and the distributed frequency range which shows the range of MTMD's distribution are used as main design parameters. When the passive MTMD is constituted with multiple cantilevers, the facility in its real production and its need for only a smaller space can be named as its several advantages. In this study, the satisfactory results were obtained from the composition of MTMD utilizing dynamic characters of cantilevers, and the verification was done by the comparison of the analysis from MTMD with the computer simulation.

  • PDF

Measurement and Analysis of Electric and Magnetic Fields near a Transmission Tower (송전철탑 주변에서 전장과 자장의 측정과 분석)

  • Lee, B.H.;Gil, H.J.;Ahn, C.H.;Lee, K.O.;Park, T.W.;Kwak, H.R.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1827-1829
    • /
    • 1997
  • In this paper, measurement and analysis of ELF electric and magnetic fields due to a transmission line have been carried out and the power frequency field strength measuring system is designed. In order to evaluate electric and magnetic fields associated with 60 Hz electric power transmission and distribution lines, the actual survey near a transmission tower has been made and analyzed. It may be inferred from these results that the maximum electric and magnetic fields strength in the vicinity of a line tower do not exceed 3.5[kV/m] and 20[${\mu}T$]. The results of the field measurements agree with limits and guidelines recommended by various authorized international institutes.

  • PDF

A Study on Construction of the CMELDC at Load Points (각 부하지점별 유효부하지속곡선 작성법에 관한 연구)

  • Kim, Hong-Sik;Mun, Seung-Pil;Choe, Jae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.195-198
    • /
    • 2000
  • This paper illustrates a new method for constructing composite power system effective load duration curve(CMELDC) at load points. The main concept of proposed method is that the CMELDC can be obtain from convolution integral processing of the outage probabilistic distribution function of not supplied power and the load duration curve given at each load point. The effective load duration curve (ELDC) at HLI plays an important part in probabilistic production simulation, reliability evaluation, outage cost assessment and power supply margins assesment for power system planning and operation. And also, the CMELDC at HLII will extend the application areas of outage cost assessment and reliability evaluation at each load point. The CMELDC at load points using the Monte Carlo method and a DC load flow constrained LP have already been developed by authors. The effective load concept at HLII, however, has not been introduced sufficiently in last paper although the concept is important. In this paper, the main concept of the effective load at HLII which is proposed in this study is defined in details as the summation of the original load and the probabilistic loads caused by the forced outage of generators and transmission lines at this load point. The outage capacity probabilistic distribution function at HLII can be obtained by combining the not supplied powers and the probabilities of the not supplied powers at this load point. It si also expected that the proposed CMELDC can be applied usefully to research areas such as reliability evaluation, probabilistic production cost simulation and analytical outage cost assessment, etc. at HLII in future. The characteristics and effectiveness of this methodology are illustrated by case study of IEEE-RTS.

  • PDF

Analysis of Stress Distribution around a Central Crack Tip in a Tensile Plate Using Phase-Shifting Photoelasticity and a Power Series Stress Function (위상이동 광탄성법과 멱급수형 응력함수를 이용한 인장시편 중앙 균열선단 주위 응력장 해석)

  • Baek, Tae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • This paper presents stress distribution around a central crack tip in a tensile plate using phase-shifting photoelasticity and a power series stress function. Isochromatic data along the straight lines far from the crack tip were obtained by phase shifting photoelasticity and were used as input data of the hybrid experimental analysis. By using the complex-type power series stress equations, the photoelastic stress distribution fields in the vicinity of the crack and the mode I stress intensity factor were obtained. With the help of image processing software, accuracy and reliability was enhanced by twice multiplying and sharpening the measured isochromatics. Actual and reconstructed fringes were compared qualitatively. For quantitative comparison, percentage errors and standard deviations of the percentage errors were calculated for all measured input data by varying the number of terms in the stress function. The experimental results agreed with those predicted by finite element analysis and empirical equation within 2 percent error.

Regional Analysis of Load Loss in Power Distribution Lines Based on Smartgrid Big Data (스마트그리드 빅데이터 기반 지역별 배전선로 부하손실 분석)

  • Jae-Hun, Cho;Hae-Sung, Lee;Han-Min, Lim;Byung-Sung, Lee;Chae-Joo, Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1013-1024
    • /
    • 2022
  • In addition to the assessment measure of electric quality levels, load loss are also a factor in hindering the financial profits of electrical sales companies. Therefore, accurate analysis of load losses generated from distributed power networks is very important. The accurate calculation of load losses in the distribution line has been carried out for a long time in many research institutes as well as power utilities around the world. But it is increasingly difficult to calculate the exact amount of loss due to the increase in the congestion of distribution power network due to the linkage of distributed energy resources(DER). In this paper, we develop smart grid big data infrastructure in order to accurately analyze the load loss of the distribution power network due to the connection of DERs. Through the preprocess of data selected from the smart grid big data, we develop a load loss analysis model that eliminated 'veracity' which is one of the characteristics of smart grid big data. Our analysis results can be used for facility investment plans or network operation plans to maintain stable supply reliability and power quality.

A Study on the Automation of MVDC System-Linked Digital Substation (MVDC 시스템연계 디지털변전소 자동화 연구)

  • Jang, Soon Ho;Koo, Ja Ik;Mun, Cho Rong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.7
    • /
    • pp.199-204
    • /
    • 2021
  • Digital substation refers to a substation that digitizes functions and communication methods of power facilities such as monitoring, measuring, control, protection, and operation based on IEC 61850, an international standard for the purpose of intelligent power grids. Based on the intelligent operating system, efficient monitoring and control of power facilities is possible, and automatic recovery function and remote control are possible in the event of an accident, enabling rapid power failure recovery. With the development of digital technology and the expansion of the introduction of eco-friendly renewable energy and electric vehicles, the spread of direct current distribution systems is expected to expand. MVDC is a system that utilizes direct current lines with voltage levels and transmission capacities between HVDCs applied to conventional transmission systems and LVDCs from consumers. Converting existing lines in substations, where most power equipment is alternating current centric, to direct current lines will reduce transmission losses and ensure greater current capacity. The process bus of a digital substation is a communication network consisting of communication equipment such as Ethernet switches that connect installed devices between bay level and process level. For MVDC linkage to existing digital substations, the process level was divided into two buses: AC and DC, and a system that can be comprehensively managed in conjunction with diagnostic IEDs as well as surveillance and control was proposed.

Characteristics of a Corona between a Wiring Clamp(Dead End Clamp) and a Porcelain Insulator Used in a 154[kV] Power Receptacle

  • Han, Un-Ki;Kim, Jong-Min;Bang, Sun-Bae;Kim, Han-Sang;Choi, Hyeong-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.57-63
    • /
    • 2007
  • The occurrence of a corona is that electrical discharge due to the heterogeneity that occurs when an electrical field is concentrated in an electrode due to a cusp formed on said electrode. Wire treatment at the end of a 154[kV] dead end clamp for end users accelerates the occurrence of corona, which in turn leads to power loss and noise. In this study, the characteristics of the corona which occurs between porcelain insulators and support clamps of overhead lines used in 154[kV] power receiving facilities for end users were investigated. The corona, which cannot be identified by one common method, was measured utilizing a UV image camera. A risk assessment for fire damage and its status was suggested. The stress distribution of the electrical field by length of bare wire was suggested by means of the finite element method(FEMLAB). As a result, it was found to affect a porcelain insulators. These results can be utilized for the enhancement of clamp installation and safety in power facilities.

A Study on the Effect of Concrete Pole Foundation on Ground Resistance Measurement (전주의 구조체접지효과가 접지저항 측정에 미치는 영향 연구)

  • Choi, J.K.;Ryu, H.Y.;Kang, M.H.;Hwang, G.C.;Shim, K.B.;Lee, H.S.;Kim, K.C.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.464-465
    • /
    • 2008
  • Concrete poles(CP) are popular supports for distribution lines. Various types of grounding electrode, such as copper-clad rods, have been used to maintain CP's ground resistance under the required value. The buried part of CP can also have structural grounding effect because of its iron reinforcing rods inside CPs. In this paper, we measured the total ground current injected into CP ground while measuring the ground current splitting to the metal electrode as well as the total injecting current. By this, it was able to measure the ground current splitting to CP structure. Based on the measured results, interrelationship between ground resistance of metal electrodes and current split factor to CP structure was analyzed.

  • PDF

A Study on Design Techniques for Span Length and Guy Wire Strength in Straight Over-head Distribution Lines (직선 가공배전선로 경간 및 지선강도 설계방안 연구)

  • Wong, Yoon-Chan;Sun, Sang-Jin;Kim, Sang-Kyu;Kim, Chang-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2226-2227
    • /
    • 2008
  • 가공배전선로는 태풍과 같은 자연재해에 상시 노출되어 시설되므로 전기고장 및 설비피해가 발생할 우려가 매우 높다. 그러나 이와 관련한 실질적인 연구들이 부족하여 가공배전선로의 설계원들이 직선선로의 경간 결정시 단순히 저압부하밀도 및 전주강도만을 고려하고 있으며, 인류지선 및 종지선의 규격 선정방법을 잘 이해하지 못함에 따라 규격 선정의 오류가 발생되기도 한다. 따라서 본 고에서는 그 동안의 연구결과를 바탕으로 가공배전선로 설계시 수평선간이격거리를 고려한 경간 결정방법과 장경간 및 표준경간의 인류지선, 장경간개소 종지선 결정방법에 대하여 사례를 통해서 설명하였다. 본 고에서 제시한 방법에 따라 설계검토를 시행한다면 표준경간에서 선간단락고장을 예방할 수 있을 뿐만 아니라, 장경간 및 표준경간의 인류지선 및 종지선의 강도가 재해시에도 충분한 강도를 확보하여 설비피해 및 전기고장을 예방할 수 있을 것으로 기대된다.

  • PDF