• Title/Summary/Keyword: Power and Rate Allocation

Search Result 247, Processing Time 0.03 seconds

A Reliability Allocation for Vehicle System of Light Rail Transit (경량전철 차량시스템의 신뢰도 배분)

  • Jeong, Rak-Gyo;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.357-363
    • /
    • 2002
  • The target reliability values are defined for the train, signaling, rail track and electric power supply system of the LRT under development. The allocation of the reliability value is based on the failure rate and the failure type in the Korean subways. The reliability allocation in the train system is the made ore detail than others. The purpose of the allocation is to verify the reliability value of the results from each of the development stage, which could be the designing, manufacturing and purchasing work. The reliability of braking system, traction system, door system and other control system could be verified by establishing reliability models of these system. It could also enable us to estimate and analyse the reliability value and redo the work if necessary to achieve the shooting reliability value. A guide to the LRT reliability criteria is to be prepared after running test on the test track.

A Genetic Approach to Transmission Rate and Power Control for Cellular Mobile Network (ICEIC'04)

  • Lee YoungDae;Park SangBong
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.10-14
    • /
    • 2004
  • When providing flexible data transmission for future CDMA(Code Division Multiple Access) cellular networks, problems arise in two aspects: transmission rate. This paper has proposed an approach to maximize the cellular network capacity by combining the genetic transmission rate allocation and a rapid power control algorithm. We present a genetic chromosome representation to express call drop numbers and transmission rate to control mobile's transmission power levels while handling their flexible transmission rates. We suggest a rapid power control algorithm, which is based on optimal control theory and Steffenson acceleration technique comparing with the existing algorithms. Computer simulation results showed effectiveness and efficiency of the proposed algorithm Conclusively, our proposed scheme showed high potential for increasing the cellular network capacity and it can be the fundamental basis of future research.

  • PDF

Incorporated Multi-State Nash Equilibriums For The Generation Allocation Considered Ramp Rate In the Competitive Power Market (경쟁적 전력시장에서 Ramp-rate를 고려한 발전량배분의 다중시간 통합 내쉬균형)

  • Park, Yong-Gi;Song, Hyoung-Yong;Lee, Joo-Won;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.569_570
    • /
    • 2009
  • This paper presents a methodology to find the profit maximized Nash Equilibriums of each generator(or GenCo), which considers the Ramp-rate of each generator under a competitive market environment. The ramp-rate of a generator is one of the physical or technical constraints of a generator and means the ability to increase or decrease the output instantaneously. In this paper, we found several Nash Equilibriums of the generation allocation problem through Dynamic Programming in a competitive market. Individual generators participate in a game to maximize its profit through competitions and play a game with bidding strategies of its generation quantities in a spot market.

  • PDF

Energy-Efficiency of Distributed Antenna Systems Relying on Resource Allocation

  • Huang, Xiaoge;Zhang, Dongyu;Dai, Weipeng;Tang, She
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1325-1344
    • /
    • 2019
  • Recently, to satisfy mobile users' increasing data transmission requirement, energy efficiency (EE) resource allocation in distributed antenna systems (DASs) has become a hot topic. In this paper, we aim to maximize EE in DASs subject to constraints of the minimum data rate requirement and the maximum transmission power of distributed antenna units (DAUs) with different density distributions. Virtual cell is defined as DAUs selected by the same user equipment (UE) and the size of virtual cells is dependent on the number of subcarriers and the transmission power. Specifically, the selection rule of DAUs is depended on different scenarios. We develop two scenarios based on the density of DAUs, namely, the sparse scenario and the dense scenario. In the sparse scenario, each DAU can only be selected by one UE to avoid co-channel interference. In order to make the original non-convex optimization problem tractable, we transform it into an equivalent fractional programming and solve by the following two sub-problems: optimal subcarrier allocation to find suitable DAUs; optimal power allocation for each subcarrier. Moreover, in the dense scenario, we consider UEs could access the same channel and generate co-channel interference. The optimization problem could be transformed into a convex form based on interference upper bound and fractional programming. In addition, an energy-efficient DAU selection scheme based on the large scale fading is developed to maximize EE. Finally, simulation results demonstrate the effectiveness of the proposed algorithm for both sparse and dense scenarios.

Sum-Rate Optimal Power Policies for Energy Harvesting Transmitters in an Interference Channel

  • Tutuncuoglu, Kaya;Yener, Aylin
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.151-161
    • /
    • 2012
  • This paper considers a two-user Gaussian interference channel with energy harvesting transmitters. Different than conventional battery powered wireless nodes, energy harvesting transmitters have to adapt transmission to availability of energy at a particular instant. In this setting, the optimal power allocation problem to maximize the sum throughput with a given deadline is formulated. The convergence of the proposed iterative coordinate descent method for the problem is proved and the short-term throughput maximizing offline power allocation policy is found. Examples for interference regions with known sum capacities are given with directional water-filling interpretations. Next, stochastic data arrivals are addressed. Finally, online and/or distributed near-optimal policies are proposed. Performance of the proposed algorithms are demonstrated through simulations.

Multi-Slice Joint Task Offloading and Resource Allocation Scheme for Massive MIMO Enabled Network

  • Yin Ren;Aihuang Guo;Chunlin Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.794-815
    • /
    • 2023
  • The rapid development of mobile communication not only has made the industry gradually diversified, but also has enhanced the service quality requirements of users. In this regard, it is imperative to consider jointly network slicing and mobile edge computing. The former mainly ensures the requirements of varied vertical services preferably, and the latter solves the conflict between the user's own energy and harsh latency. At present, the integration of the two faces many challenges and need to carry out at different levels. The main target of the paper is to minimize the energy consumption of the system, and introduce a multi-slice joint task offloading and resource allocation scheme for massive multiple input multiple output enabled heterogeneous networks. The problem is formulated by collaborative optimizing offloading ratios, user association, transmission power and resource slicing, while being limited by the dissimilar latency and rate of multi-slice. To solve it, assign the optimal problem to two sub-problems of offloading decision and resource allocation, then solve them separately by exploiting the alternative optimization technique and Karush-Kuhn-Tucker conditions. Finally, a novel slices task offloading and resource allocation algorithm is proposed to get the offloading and resource allocation strategies. Numerous simulation results manifest that the proposed scheme has certain feasibility and effectiveness, and its performance is better than the other baseline scheme.

An Efficient Discrete Bit-loading Algorithm for VDSL Channels

  • Choi Minho;Song Sangseob;Lee Jaejin
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.15-18
    • /
    • 2004
  • In this paper we present a linear discrete bit-loading algorithm that maximizes the transmit bit rate using the channel informations to optimize the performance of the very high-speed digital subscriber line(VDSL) system. It will be useful under the constraint of a maximum transmit power for each user. When the level of crosstalk is high, the power allocation of a user changes the noise experienced by the other users in the same binder. In this case, the performance of DSL modems can be improved by jointly considering the bit and power allocation of all users.

  • PDF

On Power Splitting under User-Fairness for Correlated Superposition Coding NOMA in 5G System

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.68-75
    • /
    • 2020
  • Non-orthogonal multiple access (NOMA) has gained the significant attention in the fifth generation (5G) mobile communication, which enables the advanced smart convergence of the artificial intelligence (AI), the internet of things (IoT), and many of the state-of-the-art technologies. Recently, correlated superposition coding (SC) has been proposed in NOMA, to achieve the near-perfect successive interference cancellation (SIC) bit-error rate (BER) performance for the stronger channel users, and to mitigate the severe BER performance degradation for the weaker channel users. In the correlated SC NOMA scheme, the stronger channel user BER performance is even better than the perfect SIC BER performance, for some range of the power allocation factor. However, such excessively good BER performance is not good for the user-fairness, i.e., the more power to the weaker channel user and the less power to the stronger channel user, because the excessively good BER performance of the stronger channel user results in the worse BER performance of the weaker channel user. Therefore, in this paper, we propose the power splitting to establish the user-fairness between both users. First, we derive a closed-form expression for the power splitting factor. Then it is shown that in terms of BER performance, the user-fairness is established between the two users. In result, the power splitting scheme could be considered in correlated SC NOMA for the user-fairness.

A Distributed Power Optimization Method for CDMA Cellular Mobile Systems Using an Adaptive Search Scheme

  • Lee, Young-Dae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1982-1985
    • /
    • 2003
  • Future cellular networks will mainly be driven by, high quality channels, high band with utilization, low power consumption and efficient network management. For a given channel allocation, the capacity and quality of communication of cellular radio systems using CDMA(Code Division Multiple Access) can be increased by using a transmitter power control scheme to combat the near-far problem. Centralized power control schemes or distributed ones to maximize the minimum signal-to-interference in each user of CDMA wireless network have been investigated. This paper has proposed a distributed power control algorithm, which employs an adaptive search scheme, in order to solve quickly the linear systems of equations for power update in CDMA cellular radio systems. The simulation results show that the proposed scheme has faster convergence rate than the typical bang-bang type of distributed power control algorithm, which has been much used as a reference algorithm in IS-95A and W-CDMA communication network.

  • PDF

Adaptive Resource Allocation for Efficient Power Control Game in Wireless Networks (무선 네트워크에서 효율적인 전력 제어 게임을 위한 적응 자원 할당 기법)

  • Wang, Jin-Soo;Park, Jae-Cheol;Hwang, Sung-Hyun;Kim, Chang-Joo;Kim, Yun-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.221-228
    • /
    • 2009
  • We consider distributed resource allocation among the links in a wireless network to minimize the total transmit power of the network while meeting the target rate required by each link. The problem to be solved is how to change the amount of wireless resource allocated and the number of links sharing the resource according to the interference environment so that the following distributed power control game converges to a stable point. To provide a distributed method with less complexity and lower information exchange than the centralized optimal method, we define the resource sharing level among the links from which the size of resource allocated and the links sharing the resource are determined distributively. It is shown that the performance of the proposed method is better than that of the conventional methods, orthogonal resource allocation only and resource sharing only, as well as it approaches to that of the optimal method.