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Abstract 

 
The rapid development of mobile communication not only has made the industry gradually 
diversified, but also has enhanced the service quality requirements of users. In this regard, it 
is imperative to consider jointly network slicing and mobile edge computing. The former 
mainly ensures the requirements of varied vertical services preferably, and the latter solves the 
conflict between the user's own energy and harsh latency. At present, the integration of the 
two faces many challenges and need to carry out at different levels. The main target of the 
paper is to minimize the energy consumption of the system, and introduce a multi-slice joint 
task offloading and resource allocation scheme for massive multiple input multiple output 
enabled heterogeneous networks. The problem is formulated by collaborative optimizing 
offloading ratios, user association, transmission power and resource slicing, while being 
limited by the dissimilar latency and rate of multi-slice. To solve it, assign the optimal problem 
to two sub-problems of offloading decision and resource allocation, then solve them separately 
by exploiting the alternative optimization technique and Karush-Kuhn-Tucker conditions. 
Finally, a novel slices task offloading and resource allocation algorithm is proposed to get the 
offloading and resource allocation strategies. Numerous simulation results manifest that the 
proposed scheme has certain feasibility and effectiveness, and its performance is better than 
the other baseline scheme. 
 
 
Keywords: mobile communication, massive multiple input multiple output, network slicing, 
task offloading, resource allocation. 
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1. Introduction 

Due to the diversity of applications and the large-scale growth of traffic, traditional network 
models and computing methods cannot achieve the unique service quality needs of emerging 
industries. For guaranteeing the different demands in terms of rate, delay, and terminal scale 
and solving the contradiction between computing-intensive and delay-intensive applications 
and limited terminal energy, network slicing (NS) and mobile edge computing (MEC) are both 
widely used [1]. NS is an indispensable pivotal technology to support the emerging and 
complex heterogeneous wireless network, such as the Internet of Things (IoT), optical fiber 
communication networks, and drone networks [2]. Using network function virtualization 
(NFV) and virtual network function (VNF), network elements can be transformed from the 
traditional fixed hardware to the software form on the generic hardware [3]. Virtual resources 
can be dynamically allocated to various vertical applications with specific requirements to 
build multiple independent logical slices on the same infrastructure [4]. Only the user 
completes the task, the allocated resources can be dismantled and returned to the infrastructure 
for the next allocation. Each type of slices, including mobile devices, access, transport, and 
core network in the network, can logically independently serve customized use cases with 
unique quality of service (QoS) [5].  

An important note, with the explosive growth of sophisticated applications and traffic, the 
terminal may face insufficient capabilities when processing computing-intensive tasks and 
time-sensitive applications [6]. However, traditional mobile center cloud (MCC) consumes 
much energy consumption, because of the long backhaul links, unpredictable delay, and 
congestion characteristics, which is contrary to the limited terminal energy [7]. Aiming at the 
shortcomings of traditional MCC, MEC is proposed as a promising computing method, which 
deploys the server on the access network side, and takes the advantage of short distance to 
assist users in task processing [8]. As one of the crucial technologies in MEC, computation 
offloading refers to transferring part or all user tasks to edge servers for computing using the 
supplied resources by servers. It mainly overcome the problem of poor terminal computing 
performance and low energy efficiency [9]. Therefore, how to obtain reasonable offloading 
decisions of tasks is particularly important. Moreover, massive multiple input multiple output 
(MIMO) is very popular as the preferred technology for current 5G and subsequent network 
development since it can effectively improve spectrum utilization and reduce transmission 
delay [10]. 

In this study, NS and massive MIMO techniques are integrated into MEC to address the 
problem of coexistence of different vertical industries and make a certain contribution to 
prolonging the life cycle of terminals. Users can perform partial offloaded tasks and remaining 
tasks on the server and locally in parallel for slicing delay and rate requirements. This study 
consists of two levels, for slice level, it clarifies the association between base stations and slice 
users by comparing processing energy consumption in different servers. For the user level, 
jointly optimize offloading ratio, user power, and computing resource for partial offloaded 
tasks. At the same time, the mobile devices can adjust their CPU frequencies to handle non-
offloaded tasks. Unlike the previously research, this work aims to minimize the total energy 
consumption of slice and servers under the conditions of strictly satisfying the latency and 
rate. For achieving the goal, a massive MIMO enabled multi-slice MEC offloading model is 
introduced and the two-level problem is formulated as a nonlinear joint optimization problem 
with multiple equality and inequalities constraints. Given the non-convex properties of the 
problem, design a new iterative optimization algorithm relying on the alternating optimization 
and KKT conditions to solve it. Simulation results verify that this scheme has greater 
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superiority over some baseline offloading algorithms and modes. 
Recently, the research on minimizing delay, energy consumption, and the balance between 

them in MEC-based networks has been solved through wireless and computing resource 
allocation, without considering network slicing [11]-[14]. In [11], without considering the 
delay, the authors investigated an energy-saving calculation offloading management scheme, 
which is suitable for small cell networks and mainly optimizes the energy consumption of all 
users in the MEC system. In [12] the authors aim to overcome dynamic service requirements 
of users, jointly optimize user association, D2D mode conversion and spectrum resource in an 
underlying 5G-HCN with network slicing to minimize the server computing time. The authors 
in [13] designed a partial offloading framework to minimize unit bit energy consumption. 
Once the data transmission is compressed, which can save up to 35% energy compared to 
general transmission. Also, the authors in [14] optimized offloading strategies, bandwidths, 
and computing resources for minimizing the computation overhead in a heterogeneous MEC 
network with wireless backhaul. Specifically, time and energy consumption of users are both 
considered in it. 

Currently, some work has been implemented on the fusion of massive MIMO technology 
and MEC. The authors in [15] designed an offloading algorithm, which is based on the internal 
primitive dual algorithm and the external delay perception descent algorithm, to study the 
energy minimization of the system with considering downlink transmission. Additionally, the 
authors in [16] presented a sequence optimization framework and design a computational 
offloading scheme to optimize system energy consumption where imperfect channel state 
information is considered. However, it does not mention the offloading problem. By using 
binary search and convex optimization methods [17], the authors in [18] given the careful 
consideration of the different CSI estimation for reducing the maximum energy consumption, 
which is subject to meeting resources and latency requirements. In [19], the researchers 
addressed the resource deployment issue by dealing with the offloading decision making and 
multi-user MIMO precoding. The authors in [20] exploited an algorithm with fractional 
programming and augmented Lagrangian method to minimize the sum of the deviations 
between the actual and required latency by an appropriate proportional. Nevertheless, none of 
the previous works simultaneously consider the offloading decisions and resource 
optimization in multi-requirement vertical services, and the fusion is crucial for network 
deployment and low-latency, high-rate communications in the future. 

Although the aforementioned research is already sufficient, there are currently a few studies 
on the sliced network with MEC [21]-[24]. In all researches, the authors in [21] proposed an 
end-to-end slice and computing resource allocation algorithm to optimize the service delay for 
URLLC slices. Infrastructure shares wireless and computing resources to multiple virtual 
network operators (MVNO) in [22] and the authors obtained the optimal resource allocation 
strategy by minimizing energy consumption and delay. Similarity to [22], the authors in [23] 
jointly sliced mobile network and resources to minimize the latency of transport, outsourcing, 
and traffic processing under different types of traffic, network topology, and resources. 
Furthermore, task offloading, resources allocation, and slices reuse were all considered in a 
cellular network in [24], while time delay is not involved. 

To the best of knowledge, the fusion work of network slicing, MEC, and massive MIMO in 
the heterogeneous cellular networks has not been discussed of previous studies. So as to ensure 
the respective delay and rate requirements of vertical industries and reduce the system energy 
consumption, this study proposes a multi-slice joint offloading and resource allocation scheme 
with the purpose of jointly optimizing resources on the user side and the server side. The main 
contributions are introduced in the following 
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1） Consider the diversified service coexistence scenario with multiple MEC servers in the 
massive MIMO enabled heterogeneous network, a multi-slice joint task offloading and 
resource allocation scheme is proposed to achieve the goal of minimizing the system 
energy consumption. This scheme mainly optimizes the computing offloading and 
resource allocation of slicing tasks under the premise of satisfying the QoS requirements 
of different services. 

2） Since the joint optimization problem is a mixed integer nonlinear nonconvex problem 
(MINNP), which cannot be solved directly. Therefore, the original problem is decomposed 
into two sub-problems, i.e., resource allocation and computation offloading sub-problems, 
and then propose an effective algorithm to solve each sub-problem iteratively for joint 
optimization. Specifically, when the offloading coefficient is fixed, the local CPU 
frequency is first optimized according to the delay requirements. Next, user associations 
with BSs are determined, which remain unchanged in subsequent problem solving. 
Meanwhile, the transmission power and server computing resource allocation are 
optimally by means of D.C programming method and KKT conditions. Then, the resource 
allocation results can be used as known iteration values to help optimize offloading 
decisions for slicing users. Finally, the two subproblems are continuously alternately 
iterated to obtain the optimal solution of the joint optimization problem. 

3） Numerous simulation results prove the performance of the proposed scheme with different 
conditions. Compared with some existing offloading methods and algorithms, the results 
show that the proposed scheme is superior to the existing methods in terms of energy 
consumption and convergence speed. The partial offloading can also reduce the energy 
consumption and better meet the delay requirement. 

The rest arrangements of the paper are arranged as follows. Section 2 gives the detailed 
description of the system model. Section 3 presents the joint formulation and the specific 
algorithmic solution. Some simulation experiments are performed in Section 4 and the 
summary is given in Section 5. 

2. System Model 

As shown in Fig. 1, a massive MIMO enabled multi-slice MEC offloading model is described 
to reflect the heterogeneous feature of the network layout in real environment. It is mainly 

composed of several base stations (BSs), i.e., , n  0  is the macro 

base station (MBS) with M antennas and n  0 denotes the n-th single antenna small base 
station (SBS). Especially, each BS is equipped with a proximity sever connected by fiber to 
execute offloading computing for the relevant users. Due to the different QoS requirements of 
diverse services, for example, some require low delay and high rate, while others require high 
delay and high rate. In order to better meet the requirements, it can be achieved through 
network slicing technology. Using the NFV and VFN technologies, resources are abstractly 
converted into independent virtual network function modules leased to tenants, creating 
independent slices with specific QoS requirements. In the system, multiple vertical 
applications are concerned, such as environmental monitoring, autonomous driving, etc. 

Denote as the set of multiple slices, and slice k is represented as 

slicek  (Rk , k ), where Rk , k  are the minimum rate and maximum delay required of slice k, 

respectively. The set of users for each slice is . Computational task 
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generated by user u in slice k is D
k ,u

t   d
k ,u

,
k ,u  , where dk ,u  is the data size and k ,u  is the 

number of CPU cycles required to process one bit. To accurately guarantee the performance 
of slices, tasks must be completed at the required rate and within the specified delay. Therefore, 
it is very necessary to adopt the flexible offloading method, which means that one part of the 
task is processed locally, and the other part is transferred to the edge server for processing. 
Besides, the task can be computed independently by the mobile device, or all offloaded to the 
edge server for computing. This implementation can reduce  the energy consumption while 
meeting latency and rate requirements. 
 

 
 

Fig. 1. A massive MIMO enabled multi-slice MEC offloading model in the heterogeneous networks. 

2.1 Communication Model 

The MBS and SBS occupy different orthogonal frequency bands to avoid cross-layer 
interference and the spectrum is multiplexed among small base stations (SBSs), where the 

inter-cell interference is considered. The channel gain is h
k ,u
n , which accounts for the 

shadowing and path loss fluctuating over time. When slice user  is associated with the 
MBS, according to Shannon’s formula, the uplink rate with the maximum ratio combining can 
be computed as  

rk ,u
n  wm log2 1 M 1  pk ,uhk ,u

n 2  2 ,n  0                                   (1) 

where wm
, pk ,u

are the bandwidth and transmission power of the user u, M is the number of 

antennas installed on the MBS, and 2  is the receiver noise. In contrast, when the user u is 

associated with SBS n, the uplink rate will be defined as 

rk ,u
n  ws log2 1 pk ,uhk ,u

n 2  2 Y 2  ,n  0                                   (2) 

where , is the interference in the cell generated 

by multiple base stations. ws  is the bandwidth allocated by the SBS associated to the user. 

In view of the customization requirements of slices and the remaining resources, users can 
select one server from the base stations to perform offloaded tasks. Introduce 
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c
k ,u
 0,1,2,...,n,..., N 1  to indicate the user’s offloading location selection. I (ck ,u  n) is 

equal to 1 if the BS n is selected, otherwise I (ck ,u  n)is equal to 0. Since base stations can 

completely cover all types of users, the achievable transmission rate is uniformly expressed as 

                                               (3) 

2.2 Task Processing Model 

Using the flexible offloading method, this section introduces the task processing model 
consisting of local computing and offloading computing to ensure the slice delay and rate.  

1) Local Computing: Let k ,u  indicate the proportion of the offloaded tasks to original tasks 

of user u in slices k, i.e., 1 k ,u dk ,u
for local computing, and k ,udk ,u for offloading 

computing. The local delay of executing the fractional task is given by 

tk ,u
l k ,u , fk ,u   1 k ,u dk ,uk ,u fk ,u

                                                 (4) 

where the values of the parameters dk ,u  and k ,u depend on the application type, and fk ,u  is 

the processing capacity of the terminal, which is further interpreted as the CPU-cycle 
frequency (cycles/per second). It can be adjusted according to the amount of different tasks, 

and the maximum is f
k ,u
max . Accordingly, the power consumption of terminal during the local 

calculation is p
k ,u
 

k ,u
f

k ,u
3 . Therefore, the local energy consumption is expressed as 

ek ,u
l k ,u , fk ,u   pk ,u

l tk ,u
l  k ,uk ,u 1 k ,u dk ,u fk ,u

2                                   (5) 

where  k ,uis effective capacitance coefficient depending on different chip structures.  

2) Offloading Computing: As for offloading computing, the task is first transmitted to the 
associated BS through the wireless channel, and then processed by configured server near the 
BS. Finally, the processed result is transferred back to current user. Owing to the high power 
of BS and lower processed result, causing the return time is usually ignored [25]. Hence, 
whether the user is correlated to the MBS or one SBS in this phase, the task processing delay 
consists of two parts, that is, the task transmitting time and computing time. According to the 
formula (3), it is easy to get the transmission time and energy consumption of the offloaded 
task, which can be expressed as follows, respectively 

t
k ,u
tr c

k ,u
,

k ,u
, p

k ,u   
k ,u

d
k ,u

r
k ,u

                                                      (6) 

and 

e
k ,u
tr c

k ,u
,

k ,u
, p

k ,u   p
k ,u


k ,u

d
k ,u

r
k ,u

                                                 (7) 

where pk ,u is the transmission power of the user, and r
k ,u
n is the uplink transmission rate at 

which the task is delivered to a specific BS. Once the edge server receives a task that need to 
be computed, it will allocate a portion of CPU frequencies for task calculation. Due to the 

differences in the computing capacities of MBS and SBS, define as the 
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computing resource for BS n. Analogously, the computing time and energy consumption on 
the MEC server are given by 

                                        (8) 

and 

                       (9) 

where F
k ,u
n , n  are the resource allocated for the current user and conversion factor of the 

server n (i.e., CPU cycles per bit), respectively, and  n  is the hardware coefficient of the 

server and it is a constant. Consequently, from the above analysis, the time and energy 
consumption of the entire offloading calculation process can be expressed as 

tk ,u
o ck ,u ,k ,u , pk ,u , Fk ,u

n   tk ,u
tr ck ,u ,k ,u , pk ,u   tk ,u

s ck ,u ,k ,u , Fk ,u
n                    (10) 

and  

ek ,u
o ck ,u ,k ,u , pk ,u , Fk ,u

n   ek ,u
tr ck ,u ,k ,u , pk ,u  ek ,u

s ck ,u ,k ,u , Fk ,u
n                    (11) 

respectively. During the task processing, the local and MEC server computing can be regarded 
as being performed in parallel. The actual delay is the longer time consuming in local and 
offloading computing. The specific formula can be described as 

           (12) 

                                       

3. Problem Formulation and Joint Optimization 

The optimization goal is to minimize the overall system energy consumption while 
maintaining the delay and rate requirements for various slices, and allocate resources and 
offload tasks for users. Based on the partial offloading feature, it needs to minimize the both 
the both mobile device and server energy consumption. Notably, the mobile device’s energy 
consumption is concerned with the amount of non-offloaded tasks. The less non-offloaded 
data sizes, the less energy the terminal consumes, at which point severs will undertake more 

tasks computing and increase energy consumption. For a given  k and Rk for slice k, it is 

necessary to comprehensively coordinate the task offloading ratio and resource allocation. 
Specifically, the system jointly optimizes the offloading ratio, transmission power, user 
association, and CPU frequencies of terminals and MEC servers, and proposes an effective 
algorithm to find the most suitable parameter combination to minimize energy consumption 
and ensure the QoS requirements. The formulation and solution of the problem are given in 
the following. 

3.1 Objective Problem Formulation 

The best task offloading ratio and resource allocation strategies are get through optimizing 

offloading decision k ,u , user association ck ,u , transmission power pk ,u , and CPU frequency 
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of terminals and servers fk ,u and F
k ,u
n , respectively. Based on (5)-(11), the energy 

minimization problem is modeled as  

                       (13) 

s.t.       

    C2:  

  C3:  

C4:  

C5: c
k ,u
 0,1,2,...,n,..., N 1  

C6:  

C7:  

C8:  

C9:  

To express more clearly, the BS selection problem is visualized, then the full expression of 
the problem ( ) is 

 (14) 

In ( ), constraint C1-C4 denote the range of each variable, C5 lists all possible offloading 
locations, C6 and C7 specify the delay and rate requirements of different slices, and C8 means 
that the used resources should be within the range of total resources. C9 refers to the 
comparison of task processing time between the MBS and other base stations. Only when the 
processing time of the MBS is less than a certain percentage of the SBS processing, the MBS 
will be selected. Considering the strong processing capability of the MBS, it can support more 
users. This constraint is more realistic and avoids overloading. According to the different 
environment, setting appropriate  [0,1]  in advance. According to the different environment, 

setting appropriate  [0,1]  in advance. In special cases,   0 , it means that the MBS is 

unavailable, and ck ,u  will be randomly selected from small base stations. Otherwise, if 

0  1 while it is less than the set value of the current environment, the MBS will be 
selected. 

3.2 Joint Optimization 

From the above formula, it is noticed that the problem ( ) is quite challenging to settle 
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directly because it is non-convex. By using the alternative optimization and fixing some 
variables as constants, the problem is separated into two interrelated issues, namely resource 
allocation and offloading decisions sub-problems. Firstly, the task offloading ratio is given, 
and the local CPU frequency and user association with BS are optimized according to the delay 
constraints. Then, considering the different transmission models of heterogeneous networks, 
it is discussed the optimization problem of the transmission power and computing resources 
in association with MBS or SBS respectively. Finally, task offloading ratio is optimized using 
the above optimization parameters. Concrete solutions to two sub-problems are given in the 
following: 

1）Resource Allocation Sub-problem 

Given k ,u , the optimization problem is expressed as 

                          (15) 

s.t. C2-C9     
Obviously, the constraint C6 can be extended the following 

:   

 

Problem ( ) consists of three parts, only the first part is related to the user’s CPU 

frequency and has no embedding relationship with the other parts. According to the , it 

gets fk ,u  1 k ,u dk ,uk ,u  k
. Meanwhile, it is proved that the first derivative of 

ek ,u
l k ,u , fk ,u   is always positive in the given interval. Thus, the optimal CPU frequency of 

the terminal is fk ,u
*  1 k ,u dk ,uk ,u  k

. 

After acquiring the optimal value f
k ,u
* , the problem ( ) is simplified to ( ), which 

mainly involves the base station selection, power allocation and resource slicing 

                                       (16) 

s.t. C2, C4-C9 

Through observing the problem ( ), it is unable to solve directly due to the non-convex 

mixed nonlinear properties. First, deal with the coexistence of discrete and continuous 
variables to facilitate the solution, appropriately relax the feasible range of discrete variables, 

ck ,u {0,1,2,...,n,..., N 1}are mapped to . Since every user can only select one 

server for offloading at a time. Taking the energy consumption in MBS and SBS as the basis 
of selecting the server. The user association problem is given by  

                     (17) 

s.t. C2, C4-C8, : . 
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where ek ,u
l k ,u , fk ,u  is omitted, as it is a constant in problem ( ) and ( ). ek ,u

SBS pk ,u , Fk ,u
n  , 

ek ,u
MBS pk ,u , Fk ,u

n are the energy consumption of the current user connected to the relevant SBS 

and MBS, respectively.  

According to the , when ek ,u
MBS pk ,u , Fk ,u

n   ek ,u
SBS pk ,u , Fk ,u

n , the user association is given 

by . On the contrary, when it is ek ,u
MBS pk ,u , Fk ,u

n   ek ,u
SBS pk ,u , Fk ,u

n , the 

optimal user association is denoted as . 

Different base stations are selected for association, the interference existing in the system is 
inconsistent, and there is a certain coupling between the transmission power and the 
interference. By discussing two cases in which users associate with MBS and SBS respectively, 
the optimal solution of the relevant variables is finally obtained. 
Case I: The slice user u is associated with the MBS. 

Once the slice user is connected to the MBS, set . Problem ( ) will be converted into 

                                             (18) 

s.t. C2, C4, C6-C8 

Regarding the total energy consumption ek ,u
MBS pk ,u , Fk ,u

n   ek ,u
tr k ,u , pk ,u  ek ,u

MBS k ,u , Fk ,u
n  , 

and it represents the energy consumption in the transferring phase and the MBS processing 
phase. The specific description is  

             (19) 

s.t. C2, C4, C6-C8 
Before discussing resources allocation, Lemma 1 is introduced for a given feasible 

offloading coefficient, which ensures that user can always obtain resource allocation strategies 
quickly when the MBS server is used. 

Lemma 1. For fixed k ,u , the objective problem ( ) is transformed into a convex function 

when the user is associated with MBS. 

Proof. The first term of formula (19) is abstracted into the form h p
k ,u    p

k ,u

log
2

1 p
k ,u
 

with 

respect of variable pk ,u , where   k ,udk ,u wm and   M 1 hk ,u
n 2  2 . The first derivative 

function of h x is expressed as 


pk ,u

h p
k ,u  

 log
2

1 p
k ,u
   p

k ,u


1 p
k ,u
 ln2

log
2

1 p
k ,u
 





2                                       (20)     

Define f p
k ,u    log

2
1 p

k ,u
   p

k ,u


1 p
k ,u
 ln2

in pk ,u with 
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 pk ,u
f pk ,u   ln2log2 1 pk ,u   0 of pk ,u  0 , and hence h pk ,u  is monotonically 

increasing function. Therefore, the problem ( ) is monotonically increasing with respect to 

variable pk ,u . There is no interference term in the rate, and the power can be obtained directly, 

via Theorem 1. 

Theorem 1: For fixing F
k ,u
n , the optimal p

k ,u
* of (19) is given by 

                         (21) 

where ℓm 
k ,udk ,u


k
 

k ,u
d

k ,u


n
F

k ,u
n ,m   2 M 1 hk ,u

n 2 . 
Proof: Utilizing the constraint , it gets rk ,u pk ,u   ℓm

. If Rk  ℓm , the power satisfies

p
k ,u
 (2

Rk

wm 1)
m

.Otherwise, if Rk  ℓm , it is accepted p
k ,u
 (2

k ,udk ,u

wm  k k ,udk ,u n Fk ,u
n  1)

m
. The 

available power range is further reduced to p
k ,u
min  p

k ,u
 p

k ,u
max

. ek ,u
tr k ,u , pk ,u   is the 

monotonically increasing function of pk ,u , and the optimal p
k ,u
*

will be obtained at the lowest 

boundary, where the first-derivation of ek ,u
tr k ,u , pk ,u   is equal to 0. 

Case II: The slice user u is associated with SBS n. 

When the user u is associated with a certain SBS, set .For a given offloading 

coefficient, the problem ( ) is described as 

                                                    (22) 

Similar to Case I, ek ,u
SBS pk ,u , Fk ,u

n   ek ,u
tr k ,u , pk ,u   ek ,u

SBS k ,u , Fk ,u
n  is the offloading energy 

consumption when connected to the selected server. The formula (18) is expanded and 
rewritten as 

        (23) 

s.t. C2, C4, C6-C8 

Due to the existence of interference terms in rk ,u , the problem ( ) is certified non-convex. 

For facilitating the solution, utilizing the D.C programming method to convert the rate function 
to the difference of two logarithmic functions, which is expressed as 
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                          (24) 

In (24), 

z pk ,u   log2 pk ,uhk ,u
n 2  2 Y 2                                                   (25) 

s pk ,u   log2  2 Y 2                                                           (26) 

To optimize the power distribution, the first-order Taylor expansion of 

s pk ,u  is approximated as  

                                  (27) 

where p
k ,u

( l )
 is the optimized value of pk ,u obtaining after l iteration. The rate formula rk ,u  

can be updated as  

                            (28) 

The optimization problem ( ) can be transformed into: 

             (29) 

s.t C2, :  

Initializing a p
k ,u
(0)

, the problem ( ) can be solved iterative. p
k ,u
( l )

 is the power value 

updated after l iteration. Calculate the normalized error of p
k ,u
( l )

at l iterations and p
k ,u
( l )

 at (l-1) 

iterations, which can be used as an admission criterion for whether to continue the iteration. 

Only k ,u  pk ,u
( l )  pk ,u

(l1) pk ,u
( l1) is less than a given minimum value, the optimal power is

p
k ,u
*  p

k ,u
( l )

. Conversely, it will continue to iterative update until the limit is reached. Under the 

premise of a given offloading decision, both the local computation and transmission energy 
consumption are constants. The optimal computing resource slices for user is obtained as  

                                    (30) 

s.t. C4, , C8.    
The Lagrangian function of (30) is described as  
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   (31) 

where  0, v  0 are the Lagrangian multipliers of ,C8, then the KKT conditions are 

applied to get the optimal F
k ,u
n

. 

2）Offloading Decision Sub-problem 

Given the fixed f
u,k

,c
u ,k

, p
k ,u

, F
k ,u
n

, the offloading decision problem is expressed as  

             (32) 

s.t. C1, C6, C10:  

It is easy to find the problem ( ) and constraints are affine with respect to k ,u if the user 

associations are decided. The optimal solutions can be obtained in polynomial time.  

3.3 Algorithm Implementation and Complexity 

The realization process of the scheme can be divided into four parts. First, on the basis of 
alternating optimization, the objective problem is split into offloading decision and resource 
allocation. With the fixed offloading ratio, local CPU-frequency is adjusted using (15). Next, 
utilize (17) to find the association between slice user and the base station. Then, under the 
coverage of the MBS and SBS, the optimal power can be obtained according to (21) and (27), 
respectively, and the computing resources of server is sliced to provide services for the 
offloading task using (31). Finally, the offloading decision problem is optimized in the current 
iteration with the known resources. The above process repeated until convergence and the 
specific implementation is described in Algorithm 1. The execution complexity of the 

algorithm is O J U '  Z 3  , where J, U ' , and Z are the number of iterations, users, and 

optimized variables. 
Algorithm 1 Multi-slice joint task offloading and resource allocation 

1: Set a suitable initial value for  

2: Set j  1,  

3: while | e
k ,u

( j 1)  e
k ,u

( j) | 
1
or j  20  do 

4:     For slices k=1 to K do 
5:        For user u=1 to U do 

6:           Compute f
k ,u
* ( j)  from f

k ,u
*  1 

k ,u dk ,u


k ,u


k  

7:           At a given 
k ,u

( j) , compute c
k ,u

( j)  using (17) 

8:           if c
k ,u

( j)  0, do 

9:                 Compute p
k ,u

( j) , and F
k ,u
n j   at a given 

k ,u
( j)  by using 

(21) and (31)



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 3, March 2023                                 807 

10:         else 

11:               Initializing k ,u=1, l =0, and a suitable power p
k ,u
(0)  

12:               While k ,u>0.01, do 

13:                   l  l 1  

14:                   Compute  using (28) 

15:                   Obtain the optimal p
k ,u

( l ) using (29) 

16:                   Calculatek ,u
 p

k ,u
( l )  p

k ,u
( l1) p

k ,u
(l1)

 at each iteration.  

17:               end   

18:               Compute F
k ,u
n j  by using (31)        

19:          end           

20:          Calculate offloading decision k ,u
( j)  using (28). 

21:         end 
22:     end 
23:   Updating system total energy consumption by adopting (10) 
24:   Updating j  j 1,  go to 3 until convergence. 
25: end 

 

4. Simulation Implementation 

To assess the proposed scheme, a heterogeneous network scenario is considered in this section, 
consisting of one MBS with 100 antennas and three single-antenna SBSs. The MBS is located 
in the center of the network and has a coverage of 100 meters, and three SBSs are randomly 
distributed within the range of the MBS with a coverage of 20 meters. The total bandwidths 
of MBS and the SBSs are 100MHz and 70MHz. The wireless bandwidths allocated to users 
are 10M and 5M, which are determined by linking to the MBS and SBSs. Further, the 
computing capabilities of edge servers connected to the MBS and the SBS are16GHz and 
8GHz [26]. The computing capacities of mobile devices can be adjusted between the interval 
[0,2] GHz. The path loss is -128.1-37.6log2 (d), and the noise power is 172 dBm [18]. The user 

power factor  k ,uis set to1027 . In addition, the maximum number of iterations j is set to 20, 

and the iteration termination value is set to 0.001. The mobile device need revolutionize 

100cycles per bit, i.e., k ,u  100cycles / bit . In the same way, the server needs to convert 

40cycles to process one bit, i.e.,  n  40cycles / bit . According to the 5G slices categories, 

the experiment defines four types of slices, which are Low Latency-Low rate Slices (LLS), 
Low Latency-High Rate Slices (LHS), High Latency-Low Rate Slices (HLS), and High 
Latency-High Rate Slices (HHS) [27]. Different types of slices own the different data sizes, 
maximum delay, and minimize rate requirements. Each type of slice can provide services for 
8 users, and the maximum power of users is 23dbm. The partial parameters details of slices 
are summarized in Table 1. 
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Table 1. Simulation Parameters 
Parameters Value 

Data size {LLS:1106 , LHS: 2106, HLS: 1106 , HHS: 2106 } (bits) 
maximum delay {LLS:0.1, LHS:0.1, HLS:0.3, HHS:0.3} (s) 
minimum rate {LLS:100 LHS:500, HLS:100, HHS:500} (kbps) 

 
Fig. 2 draws the convergence performance of the proposed algorithm with different antenna 
numbers (M=100, 200, 300, 400). Simulation diagram reveals that the algorithm gradually 
converges after several iterations. It is clearly found that the number of antennas has a 
significant impact on energy consumption, but has little effect on the convergence speed. The 
increase in the number of antennas leads to lower energy cost and faster convergence. The 
reason is that the more antennas numbers, the higher the transmission rate and the lower the 
transmission delay, resulting in relatively low offloading energy consumption. In addition, 
more users can choose the MBS for processing, which avoids the interference among users 
and reduces total energy overhead. To verify the performance of the proposed algorithm, Fig. 
3 evaluates the system energy overhead by comparing proposed algorithm with several other 
baseline algorithms, which are introduced as follows 

1) Full offloading algorithm [24]: All tasks of users are offloaded to the associated BS for 
processing using the corresponding server. During this process, the offloading ratios are 
set to1, and the local CPU frequencies are not optimized. Other optimization parameters, 
such as transmission power, server computing resources, are jointly optimized by 
Algorithm 1. 

2) Local computing algorithm [24]: The slicing tasks are handled entirely locally, and the 
system energy consumptions depend only on the terminal energy consumption. The 
local CPU frequencies scheduling are determined by Algorithm 1. 

3) Average allocation algorithm [24]: Only the computing resources provided by the MEC 
servers for offloading tasks are distributed equally, and other parameters such as 
offloading ratio, transmission power are jointly optimized by Algorithm 1. 

4) BFGS algorithm [28]: It is one of the quasi-Newtonian algorithms, which uses quasi-
Newton method to directly approximate the Hessian matrix, and then jointly optimize 
each variable. 
 

 
Fig. 2. Energy consumption versus different number of antennas. 
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Fig. 3. Energy consumption versus different number of users with five algorithms. 

 
As can be seen from the Fig. 3, energy consumption is positively correlated with the number 

of sliced users, and the increasing of five algorithms is different. This figure demonstrates that 
the least energy consumption using the proposed algorithm, followed by the BFGS. The 
average distribution, local offloading and full offloading algorithms consume relatively more 
energy. The proposed scheme utilizes partial offloading to execute tasks in parallel with the 
slicing resources from the perspective of terminals and servers, which can effective meet user’s 
latency and rate requirements. At the same time, as the rate increases and delay decreases, the 
system energy consumption also decrease. Besides, as the further supplement, Fig. 4 depicts 
the energy consumption of the above algorithms under different slices, respectively. When 
only considering a class of slices, the performance of the scheme is also comparatively better 
than other schemes. 

 

 
Fig. 4. Energy consumption versus different slices with five algorithms. 
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Fig. 5 plots the energy consumption of various slices versus the different number of users 

and antennas. As can be seen, the LHS consumes the most energy owing to its the highest 
requirements for delay and rate, and requires the server to provide more resources. HLS 
consumes the least energy and has no strict requirements on delay and rate. Likewise, LLS 
and HHS have only strict delay or rate requirements, so the energy consumption is moderate. 

 

 
Fig. 5. Energy consumption of various slices versus different number of users. 

 
Fig. 6 analyzes the overall energy expenditure under slice dissimilar data sizes and delay. 

First, remain the data sizes unchanged and expand the delay to {0.2, 0.2, 0.6, 0.6} s, which 
require fewer resources to complete the task within a wide period of time with the 
corresponding saving in energy. Intuitively, energy consumption is positively related to data 
sizes for each type of slices. Contrary to the above settings, expanding the data sizes to 
{ 2106 , 4106 , 2106 , 4106 }bits in the case of constant delay, and the system 
energy loss also drops significantly with more resource allocation for jointly processing in a 
shorter time. Meanwhile, Fig. 7 studied the effects of maximum delay and minimum rate on 
overall energy consumption. Similar to the Fig. 6, doubles the delay while keeping the rate 
constant, it will require fewer resources to complete the task and produce less energy 
consumption. In contrast, if the delay does not change and the rate is doubled, the task 
processing will need more resources to maintain the new rate. Thus, the transmission power 
will increase accordingly, resulting in an increase in the energy consumption of the system. 
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Fig. 6. Energy consumption versus different data sizes and delay. 

 
 Fig. 7. Energy consumption versus different rate and delay requirements. 

 
Fig. 8 further verifies the performance of the proposed algorithm and compares it with the 

existing methods, such as 1) JCCRAVM algorithm [29]: where only considered the resource 
allocation problem with the full offloading policy; 2) JTORAA algorithm [30]: The offloading 
policy is binary-based partial offloading, i.e., the whole task is as an offloading target, where 
a portion of tasks are executed locally, and the other tasks are executed by the MEC servers. 
At the same time, jointly optimized the user association, transmission power, and computing 
resources allocation of users and MEC severs. It is clear seen from the Fig. 8 that the energy 
consumption of these three algorithms decreases with the number of iterations increasing, and 
the proposed algorithm requires fewer iterations to obtain the optimal solution. Compared with 
algorithms that considering the binary and full offloading strategies, the method with partial 
offloading can better save energy consumption. This is because the partial offloading decision 
can divide the task into two parts to process in parallel, and allocating resources for local and 
offloaded tasks independently, which reduces the task processing delay and the number of 
exchanges in the resource allocation phase. Furthermore, from the perspective of convergence, 
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it can be discovered that when reaching the lowest energy consumption, the proposed 
algorithms, JCCRAVM and JTORAA algorithm require 5, 10, 3 iterations, respectively. The 
proposed algorithm in this paper can complete the calculation more efficiently with less energy 
consumption, and converges more easily than the JCCRAVM algorithm, but not as quickly as 
the JTORAA algorithm. 

 

 
Fig. 8. The convergence of energy consumption under different algorithms. 

 
Fig. 9 shows the impact of different numbers of SBSs on system energy consumption. When 

the number of SBSs is fixed, as the number of users increases, so does the number of tasks 
that users can offload. Therefore, under the limited system resources, the system energy 
consumption will gradually increase with the number of users. From another perspective, when 
the number of users is the same, the energy consumption will gradually decrease with the 
increase of the number of SBSs. The main reason is that the growth of SBSs will provide more 
computing and bandwidth resources, which in turn supports more offloading tasks and reduces 
energy consumption. 

 

 
Fig. 9. Energy consumption with different number of SBSs and users. 
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5. Conclusion  
In this paper, an energy efficient multi-slice task offloading and resource allocation scheme is 
developed, which guarantees the different QoS requirements of slices, and integrates massive 
MIMO technology and edge computing technology in heterogeneous networks. This scheme 
can work for multiple vertical industry coexistence scenarios with limited energy. The user 
association, power control, and resource slicing problem are jointly optimized to minimize the 
system energy consumption, and the optimal solution is obtained by using alternating 
optimization and KKT conditions. Through simulation and comparison with different 
offloading methods and different resource optimization algorithms, results prove the 
effectiveness of the proposed scheme. For slices with different configurations, the scheme can 
achieve targeted offloading and solve the coexistence problem of multiple services. Future 
work may focus on slicing resource allocation combined with cloud computing and edge 
computing. 
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